LIPIcs.CCC.2021.4.pdf
- Filesize: 0.65 MB
- 12 pages
The determinantal complexity of a polynomial P ∈ 𝔽[x₁, …, x_n] over a field 𝔽 is the dimension of the smallest matrix M whose entries are affine functions in 𝔽[x₁, …, x_n] such that P = Det(M). We prove that the determinantal complexity of the polynomial ∑_{i = 1}^n x_i^n is at least 1.5n - 3. For every n-variate polynomial of degree d, the determinantal complexity is trivially at least d, and it is a long standing open problem to prove a lower bound which is super linear in max{n,d}. Our result is the first lower bound for any explicit polynomial which is bigger by a constant factor than max{n,d}, and improves upon the prior best bound of n + 1, proved by Alper, Bogart and Velasco [Jarod Alper et al., 2017] for the same polynomial.
Feedback for Dagstuhl Publishing