Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Apers, Simon; Lee, Troy https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-143026
URL:

;

Quantum Complexity of Minimum Cut

pdf-format:


Abstract

The minimum cut problem in an undirected and weighted graph G is to find the minimum total weight of a set of edges whose removal disconnects G. We completely characterize the quantum query and time complexity of the minimum cut problem in the adjacency matrix model. If G has n vertices and edge weights at least 1 and at most τ, we give a quantum algorithm to solve the minimum cut problem using Õ(n^{3/2}√{τ}) queries and time. Moreover, for every integer 1 ≤ τ ≤ n we give an example of a graph G with edge weights 1 and τ such that solving the minimum cut problem on G requires Ω(n^{3/2}√{τ}) queries to the adjacency matrix of G. These results contrast with the classical randomized case where Ω(n²) queries to the adjacency matrix are needed in the worst case even to decide if an unweighted graph is connected or not.
In the adjacency array model, when G has m edges the classical randomized complexity of the minimum cut problem is ̃ Θ(m). We show that the quantum query and time complexity are Õ(√{mnτ}) and Õ(√{mnτ} + n^{3/2}), respectively, where again the edge weights are between 1 and τ. For dense graphs we give lower bounds on the quantum query complexity of Ω(n^{3/2}) for τ > 1 and Ω(τ n) for any 1 ≤ τ ≤ n.
Our query algorithm uses a quantum algorithm for graph sparsification by Apers and de Wolf (FOCS 2020) and results on the structure of near-minimum cuts by Kawarabayashi and Thorup (STOC 2015) and Rubinstein, Schramm and Weinberg (ITCS 2018). Our time efficient implementation builds on Karger’s tree packing technique (STOC 1996).

BibTeX - Entry

@InProceedings{apers_et_al:LIPIcs.CCC.2021.28,
  author =	{Apers, Simon and Lee, Troy},
  title =	{{Quantum Complexity of Minimum Cut}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{28:1--28:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14302},
  URN =		{urn:nbn:de:0030-drops-143026},
  doi =		{10.4230/LIPIcs.CCC.2021.28},
  annote =	{Keywords: Quantum algorithms, quantum query complexity, minimum cut}
}

Keywords: Quantum algorithms, quantum query complexity, minimum cut
Seminar: 36th Computational Complexity Conference (CCC 2021)
Issue date: 2021
Date of publication: 08.07.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI