LIPIcs.CCC.2021.31.pdf
- Filesize: 0.86 MB
- 30 pages
How difficult is it to compute the communication complexity of a two-argument total Boolean function f:[N]×[N] → {0,1}, when it is given as an N×N binary matrix? In 2009, Kushilevitz and Weinreb showed that this problem is cryptographically hard, but it is still open whether it is NP-hard. In this work, we show that it is NP-hard to approximate the size (number of leaves) of the smallest constant-round protocol for a two-argument total Boolean function f:[N]×[N] → {0,1}, when it is given as an N×N binary matrix. Along the way to proving this, we show a new deterministic variant of the round elimination lemma, which may be of independent interest.
Feedback for Dagstuhl Publishing