LIPIcs.CCC.2021.36.pdf
- Filesize: 0.72 MB
- 22 pages
We study pseudo-deterministic query complexity - randomized query algorithms that are required to output the same answer with high probability on all inputs. We prove Ω(√n) lower bounds on the pseudo-deterministic complexity of a large family of search problems based on unsatisfiable random CNF instances, and also for the promise problem (FIND1) of finding a 1 in a vector populated with at least half one’s. This gives an exponential separation between randomized query complexity and pseudo-deterministic complexity, which is tight in the quantum setting. As applications we partially solve a related combinatorial coloring problem, and we separate random tree-like Resolution from its pseudo-deterministic version. In contrast to our lower bound, we show, surprisingly, that in the zero-error, average case setting, the three notions (deterministic, randomized, pseudo-deterministic) collapse.
Feedback for Dagstuhl Publishing