Coherent Control and Distinguishability of Quantum Channels via PBS-Diagrams

Authors Cyril Branciard , Alexandre Clément , Mehdi Mhalla , Simon Perdrix



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2021.22.pdf
  • Filesize: 0.86 MB
  • 20 pages

Document Identifiers

Author Details

Cyril Branciard
  • Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, F-38000 Grenoble, France
Alexandre Clément
  • Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
Mehdi Mhalla
  • Université Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
Simon Perdrix
  • Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Cite As Get BibTex

Cyril Branciard, Alexandre Clément, Mehdi Mhalla, and Simon Perdrix. Coherent Control and Distinguishability of Quantum Channels via PBS-Diagrams. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/LIPIcs.MFCS.2021.22

Abstract

Even though coherent control of quantum operations appears to be achievable in practice, it is still not yet well understood. Among theoretical challenges, standard completely positive trace preserving (CPTP) maps are known not to be appropriate to represent coherently controlled quantum channels. We introduce here a graphical language for coherent control of general quantum channels inspired by practical quantum optical setups involving polarising beam splitters (PBS). We consider different situations of coherent control and disambiguate CPTP maps by considering purified channels, an extension of Stinespring’s dilation.
First, we show that in classical control settings, the observational equivalence classes of purified channels correspond to the standard definition of quantum channels (CPTP maps). Then, we propose a refinement of this equivalence class generalising the "half quantum switch" situation, where one is allowed to coherently control which quantum channel is applied; in this case, quantum channel implementations can be distinguished using a so-called transformation matrix. A further refinement characterising observational equivalence with general extended PBS-diagrams as contexts is also obtained. Finally, we propose a refinement that could be used for more general coherent control settings.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum computation theory
  • Theory of computation → Axiomatic semantics
  • Theory of computation → Categorical semantics
  • Hardware → Quantum computation
  • Hardware → Quantum communication and cryptography
Keywords
  • Quantum Computing
  • Diagrammatic Language
  • Quantum Control
  • Polarising Beam Splitter
  • Categorical Quantum Mechanics
  • Quantum Switch

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alastair A. Abbott, Julian Wechs, Dominic Horsman, Mehdi Mhalla, and Cyril Branciard. Communication through coherent control of quantum channels. Quantum, 4:333, 2020. URL: https://doi.org/10.22331/q-2020-09-24-333.
  2. Mateus Araújo, Fabio Costa, and Časlav Brukner. Computational Advantage from Quantum-Controlled Ordering of Gates. Physical Review Letters, 113(25):250402, 2014. URL: https://doi.org/10.1103/PhysRevLett.113.250402.
  3. Cyril Branciard, Alexandre Clément, Mehdi Mhalla, and Simon Perdrix. Coherent control and distinguishability of quantum channels via PBS-diagrams, 2021. URL: http://arxiv.org/abs/2103.02073.
  4. Titouan Carette, Simon Perdrix, Renaud Vilmart, and Emmanuel Jeandel. Completeness of Graphical Languages for Mixed States Quantum Mechanics. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), Patras, Greece, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.108.
  5. Giulio Chiribella. Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Physical Review A, 86(4):040301, 2012. URL: https://doi.org/10.1103/PhysRevA.86.040301.
  6. Giulio Chiribella, Giacomo Mauro D'Ariano, Paolo Perinotti, and Benoît Valiron. Quantum computations without definite causal structure. Physical Review A, 88:022318, August 2013. URL: https://doi.org/10.1103/PhysRevA.88.022318.
  7. Giulio Chiribella and Hlér Kristjánsson. Quantum shannon theory with superpositions of trajectories. Proceedings of the Royal Society A, 475:20180903, 2019. URL: https://doi.org/10.1098/rspa.2018.0903.
  8. Alexandre Clément and Simon Perdrix. PBS-calculus: A graphical language for coherent control of quantum computations. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.MFCS.2020.24.
  9. Bob Coecke and Simon Perdrix. Environment and classical channels in categorical quantum mechanics. Logical Methods in Computer Science, Volume 8, Issue 4, November 2012. URL: https://doi.org/10.2168/LMCS-8(4:14)2012.
  10. Nicolai Friis, Vedran Dunjko, Wolfgang Dür, and Hans J. Briegel. Implementing quantum control for unkown subroutines. Physical Review A, 89:030303(R), 2014. URL: https://doi.org/10.1103/PhysRevA.89.030303.
  11. Nicolas Gisin, Noah Linden, Serge Massar, and Sandu Popescu. Error filtration and entanglement purification for quantum communication. Physical Review A, 72:012338, July 2005. URL: https://doi.org/10.1103/PhysRevA.72.012338.
  12. Kaumudibikash Goswami, Christina Giarmatzi, Michael Kewming, Fabio Costa, Cyril Branciard, Jacquiline Romero, and Andrew G. White. Indefinite causal order in a quantum switch. Physical Review Letters, 121:090503, August 2018. URL: https://doi.org/10.1103/PhysRevLett.121.090503.
  13. Hlér Kristjánsson, Giulio Chiribella, Sina Salek, Daniel Ebler, and Matthew Wilson. Resource theories of communication. New Journal of Physics, 22(7):073014, 2020. URL: https://doi.org/10.1088/1367-2630/ab8ef7.
  14. Saunders Mac Lane. Categorical algebra. Bulletin of the American Mathematical Society, 71:40-106, 1965. URL: https://doi.org/10.1090/S0002-9904-1965-11234-4.
  15. Daniel K. L. Oi. Interference of quantum channels. Physical Review Letters, 91:067902, 2003. URL: https://doi.org/10.1103/PhysRevLett.91.067902.
  16. Timothy M. Rambo, Joseph B. Altepeter, Prem Kumar, and Giacomo Mauro D'Ariano. Functional quantum computing: An optical approach. Physical Review A, 93:052321, May 2016. URL: https://doi.org/10.1103/PhysRevA.93.052321.
  17. W. Forrest Stinespring. Positive functions on C^*-algebras. Proceedings of the American Mathematical Society, 6:211-216, 1955. URL: https://doi.org/10.1090/S0002-9939-1955-0069403-4.
  18. Fabio Zanasi. Interacting Hopf Algebras- the Theory of Linear Systems. PhD thesis, Ecole normale supérieure de lyon - ENS LYON, 2015. URL: http://arxiv.org/abs/1805.03032.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail