@InProceedings{mullerhannemann_et_al:OASIcs.ATMOS.2021.3,
author = {M\"{u}ller-Hannemann, Matthias and R\"{u}ckert, Ralf and Schiewe, Alexander and Sch\"{o}bel, Anita},
title = {{Towards Improved Robustness of Public Transport by a Machine-Learned Oracle}},
booktitle = {21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)},
pages = {3:1--3:20},
series = {Open Access Series in Informatics (OASIcs)},
ISBN = {978-3-95977-213-6},
ISSN = {2190-6807},
year = {2021},
volume = {96},
editor = {M\"{u}ller-Hannemann, Matthias and Perea, Federico},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2021.3},
URN = {urn:nbn:de:0030-drops-148721},
doi = {10.4230/OASIcs.ATMOS.2021.3},
annote = {Keywords: Public Transportation, Timetabling, Machine Learning, Robustness}
}