OASIcs.ATMOS.2021.13.pdf
- Filesize: 1.08 MB
- 19 pages
We present dynamic flow algorithms to solve the k-sink problem whose aim is to locate k sinks (evacuation centers) in such a way that the evacuation time of the last evacuee is minimized. In the confluent model, the evacuees originating from or passing through a vertex must evacuate to the same sink, and most known results on the k-sink problem adopt the confluent model. When the edge capacities are uniform (resp. general), our algorithms for non-confluent flow in the path networks run in O(n + k² log² n) (resp. O(n log(n) + k² log⁵ n)) time, where n is the number of vertices. Our algorithms for cycle networks run in O(k²n log² n) (resp. O(k²n log⁵ n)) time, when the edge capacities are uniform (resp. general).
Feedback for Dagstuhl Publishing