LIPIcs.CP.2021.54.pdf
- Filesize: 0.57 MB
- 18 pages
Constraint acquisition can assist non-expert users to model their problems as constraint networks. In active constraint acquisition, this is achieved through an interaction between the learner, who posts examples, and the user who classifies them as solutions or not. Although there has been recent progress in active constraint acquisition, the focus has only been on learning satisfaction problems with hard constraints. In this paper, we deal with the problem of learning soft constraints in optimization problems via active constraint acquisition, specifically in the context of the Max-CSP. Towards this, we first introduce a new type of queries in the context of constraint acquisition, namely partial preference queries, and then we present a novel algorithm for learning soft constraints in Max-CSPs, using such queries. We also give some experimental results.
Feedback for Dagstuhl Publishing