The VC-Dimension of Limited Visibility Terrains

Authors Matt Gibson-Lopez , Zhongxiu Yang



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2021.5.pdf
  • Filesize: 1.15 MB
  • 17 pages

Document Identifiers

Author Details

Matt Gibson-Lopez
  • The University of Texas at San Antonio, TX, USA
Zhongxiu Yang
  • The University of Texas at San Antonio, TX, USA

Cite As Get BibTex

Matt Gibson-Lopez and Zhongxiu Yang. The VC-Dimension of Limited Visibility Terrains. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/LIPIcs.ISAAC.2021.5

Abstract

Visibility problems are fundamental to computational geometry, and many versions of geometric set cover where coverage is based on visibility have been considered. In most settings, points can see "infinitely far" so long as visibility is not "blocked" by some obstacle. In many applications, this may be an unreasonable assumption. In this paper, we consider a new model of visibility where no point can see any other point beyond a sight radius ρ. In particular, we consider this visibility model in the context of terrains. We show that the VC-dimension of limited visibility terrains is exactly 7. We give lower bound construction that shatters a set of 7 points, and we prove that shattering 8 points is not possible.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • VC-dimension
  • Terrain Guarding
  • Limited Visibility

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. J. Abello, H. Lin, and S. Pisupati. On visibility graphs of simple polygons. Congressus Numerantium, 90:119-128, 1992. Google Scholar
  2. Boaz Ben-Moshe, Matthew J. Katz, and Joseph S. B. Mitchell. A constant-factor approximation algorithm for optimal terrain guarding. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '05, pages 515-524, USA, 2005. Society for Industrial and Applied Mathematics. Google Scholar
  3. Amitava Bhattacharya, Subir Kumar Ghosh, and Sudeep Sarkar. Exploring an unknown polygonal environment with bounded visibility. In Vassil N. Alexandrov, Jack J. Dongarra, Benjoe A. Juliano, René S. Renner, and C. J. Kenneth Tan, editors, Computational Science - ICCS 2001, pages 640-648, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. Google Scholar
  4. Therese Biedl and Saeed Mehrabi. Grid-obstacle representations with connections to staircase guarding. In Fabrizio Frati and Kwan-Liu Ma, editors, Graph Drawing and Network Visualization, pages 81-87, Cham, 2018. Springer International Publishing. Google Scholar
  5. Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite vc-dimension. Discrete & Computational Geometry, 14(4):463-479, 1995. URL: https://doi.org/10.1007/BF02570718.
  6. Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Inf. Process. Lett., 100(6):238-245, 2006. URL: https://doi.org/10.1016/j.ipl.2006.05.014.
  7. Sándor P Fekete, Joseph SB Mitchell, and Christiane Schmidt. Minimum covering with travel cost. Journal of combinatorial optimization, 24(1):32-51, 2012. Google Scholar
  8. Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons. In SWAT, pages 96-104, 1988. Google Scholar
  9. Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons. Discrete & Computational Geometry, 17(2):143-162, 1997. URL: https://doi.org/10.1007/BF02770871.
  10. Subir Kumar Ghosh, Joel Wakeman Burdick, Amitava Bhattacharya, and Sudeep Sarkar. Online algorithms with discrete visibility - exploring unknown polygonal environments. IEEE Robotics Automation Magazine, 15(2):67-76, 2008. URL: https://doi.org/10.1109/MRA.2008.921542.
  11. Matt Gibson, Gaurav Kanade, Erik Krohn, and Kasturi Varadarajan. An approximation scheme for terrain guarding. In Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 140-148, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. Google Scholar
  12. Matt Gibson, Erik Krohn, and Matthew Rayford. Guarding monotone polygons with half-guards. In Joachim Gudmundsson and Michiel H. M. Smid, editors, Proceedings of the 29th Canadian Conference on Computational Geometry, CCCG 2017, July 26-28, 2017, Carleton University, Ottawa, Ontario, Canada, pages 168-173, 2017. Google Scholar
  13. Matt Gibson, Erik Krohn, and Qing Wang. The vc-dimension of visibility on the boundary of a simple polygon. In Khaled Elbassioni and Kazuhisa Makino, editors, Algorithms and Computation, pages 541-551, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. Google Scholar
  14. Matt Gibson, Erik Krohn, and Qing Wang. The vc-dimension of visibility on the boundary of monotone polygons. Computational Geometry, 77:62-72, 2019. Canadian Conference on Computational Geometry. URL: https://doi.org/10.1016/j.comgeo.2018.10.006.
  15. Alexander Gilbers and Rolf Klein. New results on visibility in simple polygons. In Frank Dehne, Marina Gavrilova, Jörg-Rüdiger Sack, and Csaba D. Tóth, editors, Algorithms and Data Structures, pages 327-338, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. Google Scholar
  16. James King. A 4-approximation algorithm for guarding 1.5-dimensional terrains. In José R. Correa, Alejandro Hevia, and Marcos A. Kiwi, editors, LATIN, volume 3887 of Lecture Notes in Computer Science, pages 629-640. Springer, 2006. URL: https://doi.org/10.1007/11682462_58.
  17. James King. Vc-dimension of visibility on terrains. In In Proc. 20th Canadian Conference on Comput. Geom, pages 27-30, 2008. Google Scholar
  18. James King and Erik Krohn. Terrain guarding is np-hard. SIAM J. Comput., 40(5):1316-1339, 2011. URL: https://doi.org/10.1137/100791506.
  19. Erik Krohn, Matt Gibson, Gaurav Kanade, and Kasturi R. Varadarajan. Guarding terrains via local search. JoCG, 5:168-178, 2014. Google Scholar
  20. Erik Krohn and Bengt J. Nilsson. The complexity of guarding monotone polygons. In Proceedings of the 24th Canadian Conference on Computational Geometry, CCCG 2012, Charlottetown, Prince Edward Island, Canada, August 8-10, 2012, pages 167-172, 2012. URL: http://2012.cccg.ca/papers/paper26.pdf.
  21. Erik Krohn and Bengt J. Nilsson. Approximate guarding of monotone and rectilinear polygons. Algorithmica, 66(3):564-594, 2013. URL: https://doi.org/10.1007/s00453-012-9653-3.
  22. Erik A. Krohn and Bengt J. Nilsson. Approximate guarding of monotone and rectilinear polygons. Algorithmica, pages 1-31, 2012. Google Scholar
  23. T. Prellberg. Uniform q-series asymptotics for staircase polygons. Journal of Physics A: Mathematical and General, 28(5):1289-1304, March 1995. URL: https://doi.org/10.1088/0305-4470/28/5/016.
  24. Abdulmuttalib Turky Rashid, Abduladhem Abdulkareem Ali, Mattia Frasca, and Luigi Fortuna. Path planning with obstacle avoidance based on visibility binary tree algorithm. Robotics and Autonomous Systems, 61(12):1440-1449, 2013. URL: https://doi.org/10.1016/j.robot.2013.07.010.
  25. Sven Schuierer, Gregory J. E. Rawlins, and Derick Wood. A generalization of staircase visibility. In H. Bieri and H. Noltemeier, editors, Computational Geometry-Methods, Algorithms and Applications, pages 277-287, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg. Google Scholar
  26. Israel A. Wagner, Michael Lindenbaum, and Alfred M. Bruckstein. Mac versus pc: Determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains. The International Journal of Robotics Research, 19(1):12-31, 2000. URL: https://doi.org/10.1177/02783640022066716.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail