LIPIcs.FSTTCS.2021.49.pdf
- Filesize: 0.62 MB
- 15 pages
A term rewriting system (TRS) is said to be sufficiently complete when each function yields some value for any input. Proof methods for sufficient completeness of terminating TRSs have been well studied. In this paper, we introduce a simple derivation system for proving sufficient completeness of possibly non-terminating TRSs. The derivation system consists of rules to manipulate a set of guarded terms, and sufficient completeness of a TRS holds if there exists a successful derivation for each function symbol. We also show that variations of the derivation system are useful for proving special cases of local sufficient completeness of TRSs, which is a generalised notion of sufficient completeness.
Feedback for Dagstuhl Publishing