Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Brakerski, Zvika; Vaikuntanathan, Vinod https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-156243
URL:

;

Lattice-Inspired Broadcast Encryption and Succinct Ciphertext-Policy ABE

pdf-format:


Abstract

Broadcast encryption remains one of the few remaining central cryptographic primitives that are not yet known to be achievable under a standard cryptographic assumption (excluding obfuscation-based constructions, see below). Furthermore, prior to this work, there were no known direct candidates for post-quantum-secure broadcast encryption.
We propose a candidate ciphertext-policy attribute-based encryption (CP-ABE) scheme for circuits, where the ciphertext size depends only on the depth of the policy circuit (and not its size). This, in particular, gives us a Broadcast Encryption (BE) scheme where the size of the keys and ciphertexts have a poly-logarithmic dependence on the number of users. This goal was previously only known to be achievable assuming ideal multilinear maps (Boneh, Waters and Zhandry, Crypto 2014) or indistinguishability obfuscation (Boneh and Zhandry, Crypto 2014) and in a concurrent work from generic bilinear groups and the learning with errors (LWE) assumption (Agrawal and Yamada, Eurocrypt 2020).
Our construction relies on techniques from lattice-based (and in particular LWE-based) cryptography. We analyze some attempts at cryptanalysis, but we are unable to provide a security proof.

BibTeX - Entry

@InProceedings{brakerski_et_al:LIPIcs.ITCS.2022.28,
  author =	{Brakerski, Zvika and Vaikuntanathan, Vinod},
  title =	{{Lattice-Inspired Broadcast Encryption and Succinct Ciphertext-Policy ABE}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{28:1--28:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/15624},
  URN =		{urn:nbn:de:0030-drops-156243},
  doi =		{10.4230/LIPIcs.ITCS.2022.28},
  annote =	{Keywords: Theoretical Cryptography, Broadcast Encryption, Attribute-Based Encryption, Lattice-Based Cryptography}
}

Keywords: Theoretical Cryptography, Broadcast Encryption, Attribute-Based Encryption, Lattice-Based Cryptography
Seminar: 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)
Issue date: 2022
Date of publication: 25.01.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI