LIPIcs.ITCS.2022.61.pdf
- Filesize: 0.53 MB
- 12 pages
We show that the ratio of the number of near perfect matchings to the number of perfect matchings in d-regular strong expander (non-bipartite) graphs, with 2n vertices, is a polynomial in n, thus the Jerrum and Sinclair Markov chain [Jerrum and Sinclair, 1989] mixes in polynomial time and generates an (almost) uniformly random perfect matching. Furthermore, we prove that such graphs have at least Ω(d)ⁿ many perfect matchings, thus proving the Lovasz-Plummer conjecture [L. Lovász and M.D. Plummer, 1986] for this family of graphs.
Feedback for Dagstuhl Publishing