Errorless Versus Error-Prone Average-Case Complexity

Authors Shuichi Hirahara, Rahul Santhanam



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2022.84.pdf
  • Filesize: 0.77 MB
  • 23 pages

Document Identifiers

Author Details

Shuichi Hirahara
  • Principle of Informatics Research Division, National Institute of Informatics, Tokyo, Japan
Rahul Santhanam
  • Department of Computer Science, University of Oxford, UK

Acknowledgements

We thank anonymous reviewers for many insightful and inspiring comments.

Cite As Get BibTex

Shuichi Hirahara and Rahul Santhanam. Errorless Versus Error-Prone Average-Case Complexity. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 84:1-84:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.ITCS.2022.84

Abstract

We consider the question of whether errorless and error-prone notions of average-case hardness are equivalent, and make several contributions.
First, we study this question in the context of hardness for NP, and connect it to the long-standing open question of whether there are instance checkers for NP. We show that there is an efficient non-uniform non-adaptive reduction from errorless to error-prone heuristics for NP if and only if there is an efficient non-uniform average-case non-adaptive instance-checker for NP. We also suggest an approach to proving equivalence of the two notions of average-case hardness for PH.
Second, we show unconditionally that error-prone average-case hardness is equivalent to errorless average-case hardness for P against NC¹ and for UP ∩ coUP against P.
Third, we apply our results about errorless and error-prone average-case hardness to get new equivalences between hitting set generators and pseudo-random generators.

Subject Classification

ACM Subject Classification
  • Theory of computation → Complexity classes
  • Theory of computation → Interactive proof systems
  • Theory of computation → Pseudorandomness and derandomization
Keywords
  • average-case complexity
  • instance checker
  • pseudorandomness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Martín Abadi, Joan Feigenbaum, and Joe Kilian. On Hiding Information from an Oracle. J. Comput. Syst. Sci., 39(1):21-50, 1989. URL: https://doi.org/10.1016/0022-0000(89)90018-4.
  2. Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. A New General Derandomization Method. J. ACM, 45(1):179-213, 1998. URL: https://doi.org/10.1145/273865.273933.
  3. László Babai, Lance Fortnow, and Carsten Lund. Non-Deterministic Exponential Time has Two-Prover Interactive Protocols. Computational Complexity, 1:3-40, 1991. URL: https://doi.org/10.1007/BF01200056.
  4. László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP Has Subexponential Time Simulations Unless EXPTIME has Publishable Proofs. Computational Complexity, 3:307-318, 1993. URL: https://doi.org/10.1007/BF01275486.
  5. Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the Theory of Average Case Complexity. J. Comput. Syst. Sci., 44(2):193-219, 1992. URL: https://doi.org/10.1016/0022-0000(92)90019-F.
  6. Manuel Blum and Sampath Kannan. Designing Programs that Check Their Work. J. ACM, 42(1):269-291, 1995. URL: https://doi.org/10.1145/200836.200880.
  7. Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-Testing/Correcting with Applications to Numerical Problems. J. Comput. Syst. Sci., 47(3):549-595, 1993. URL: https://doi.org/10.1016/0022-0000(93)90044-W.
  8. Andrej Bogdanov and Luca Trevisan. Average-Case Complexity. Foundations and Trends in Theoretical Computer Science, 2(1), 2006. URL: https://doi.org/10.1561/0400000004.
  9. Andrej Bogdanov and Luca Trevisan. On Worst-Case to Average-Case Reductions for NP Problems. SIAM J. Comput., 36(4):1119-1159, 2006. URL: https://doi.org/10.1137/S0097539705446974.
  10. Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Learning Algorithms from Natural Proofs. In Proceedings of the Conference on Computational Complexity (CCC), pages 10:1-10:24, 2016. URL: https://doi.org/10.4230/LIPIcs.CCC.2016.10.
  11. Joan Feigenbaum and Lance Fortnow. Random-Self-Reducibility of Complete Sets. SIAM J. Comput., 22(5):994-1005, 1993. URL: https://doi.org/10.1137/0222061.
  12. Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. Simplified Derandomization of BPP Using a Hitting Set Generator. In Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, pages 59-67. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-22670-0_8.
  13. Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum. Verifying and decoding in constant depth. In Proceedings of the Symposium on Theory of Computing (STOC), pages 440-449, 2007. URL: https://doi.org/10.1145/1250790.1250855.
  14. Shuichi Hirahara. Identifying an Honest EXP^NP Oracle Among Many. In Proceedings of the Conference on Computational Complexity (CCC), pages 244-263, 2015. URL: https://doi.org/10.4230/LIPIcs.CCC.2015.244.
  15. Shuichi Hirahara. Non-black-box Worst-case to Average-case Reductions within NP. In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 247-258, 2018. Google Scholar
  16. Shuichi Hirahara. Unexpected hardness results for Kolmogorov complexity under uniform reductions. In Proceedings of the Symposium on Theory of Computing (STOC), pages 1038-1051, 2020. URL: https://doi.org/10.1145/3357713.3384251.
  17. Shuichi Hirahara. Unexpected Power of Random Strings. In Proceedings of the Innovations in Theoretical Computer Science Conference (ITCS), pages 41:1-41:13, 2020. URL: https://doi.org/10.4230/LIPIcs.ITCS.2020.41.
  18. Shuichi Hirahara and Rahul Santhanam. Excluding PH Pessiland. In Proceedings of the Innovations in Theoretical Computer Science Conference (ITCS), pages 78:1-78:25, 2022. Google Scholar
  19. Russell Impagliazzo. A Personal View of Average-Case Complexity. In Proceedings of the Structure in Complexity Theory Conference, pages 134-147, 1995. URL: https://doi.org/10.1109/SCT.1995.514853.
  20. Russell Impagliazzo and Avi Wigderson. P = BPP if E Requires Exponential Circuits: Derandomizing the XOR Lemma. In Proceedings of the Symposium on the Theory of Computing (STOC), pages 220-229, 1997. URL: https://doi.org/10.1145/258533.258590.
  21. Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom Generators, Typically-Correct Derandomization, and Circuit Lower Bounds. Computational Complexity, 21(1):3-61, 2012. URL: https://doi.org/10.1007/s00037-011-0019-z.
  22. Leonid A. Levin. Average Case Complete Problems. SIAM J. Comput., 15(1):285-286, 1986. URL: https://doi.org/10.1137/0215020.
  23. Leonid A. Levin. One-way functions and pseudorandom generators. Combinatorica, 7(4):357-363, 1987. URL: https://doi.org/10.1007/BF02579323.
  24. Yanyi Liu and Rafael Pass. On One-way Functions and Kolmogorov Complexity. In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 1243-1254, 2020. Google Scholar
  25. Yanyi Liu and Rafael Pass. On the Possibility of Basing Cryptography on EXP̸ = BPP. In Proceedings of the International Cryptology Conference (CRYPTO), pages 11-40, 2021. URL: https://doi.org/10.1007/978-3-030-84242-0_2.
  26. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic Methods for Interactive Proof Systems. J. ACM, 39(4):859-868, 1992. URL: https://doi.org/10.1145/146585.146605.
  27. Mohammad Mahmoody and David Xiao. On the Power of Randomized Reductions and the Checkability of SAT. In Proceedings of the Conference on Computational Complexity (CCC), pages 64-75, 2010. URL: https://doi.org/10.1109/CCC.2010.16.
  28. Noam Nisan and Avi Wigderson. Hardness vs Randomness. J. Comput. Syst. Sci., 49(2):149-167, 1994. URL: https://doi.org/10.1016/S0022-0000(05)80043-1.
  29. Hanlin Ren and Rahul Santhanam. Hardness of KT Characterizes Parallel Cryptography. In Proceedings of the Computational Complexity Conference (CCC), pages 35:1-35:58, 2021. URL: https://doi.org/10.4230/LIPIcs.CCC.2021.35.
  30. Rahul Santhanam. Pseudorandomness and the Minimum Circuit Size Problem. In Proceedings of the Innovations in Theoretical Computer Science Conference (ITCS), pages 68:1-68:26, 2020. URL: https://doi.org/10.4230/LIPIcs.ITCS.2020.68.
  31. Rainer Schuler and Osamu Watanabe. Towards Average-Case Complexity Analysis of NP Optimization Problems. In Proceedings of the Structure in Complexity Theory Conference, pages 148-159, 1995. URL: https://doi.org/10.1109/SCT.1995.514854.
  32. Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom Generators without the XOR Lemma. J. Comput. Syst. Sci., 62(2):236-266, 2001. URL: https://doi.org/10.1006/jcss.2000.1730.
  33. Luca Trevisan and Salil P. Vadhan. Pseudorandomness and Average-Case Complexity Via Uniform Reductions. Computational Complexity, 16(4):331-364, 2007. URL: https://doi.org/10.1007/s00037-007-0233-x.
  34. Leslie G. Valiant and Vijay V. Vazirani. NP is as Easy as Detecting Unique Solutions. Theor. Comput. Sci., 47(3):85-93, 1986. URL: https://doi.org/10.1016/0304-3975(86)90135-0.
  35. Andrew Chi-Chih Yao. Theory and Applications of Trapdoor Functions (Extended Abstract). In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 80-91, 1982. URL: https://doi.org/10.1109/SFCS.1982.45.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail