LIPIcs.ITCS.2022.84.pdf
- Filesize: 0.77 MB
- 23 pages
We consider the question of whether errorless and error-prone notions of average-case hardness are equivalent, and make several contributions. First, we study this question in the context of hardness for NP, and connect it to the long-standing open question of whether there are instance checkers for NP. We show that there is an efficient non-uniform non-adaptive reduction from errorless to error-prone heuristics for NP if and only if there is an efficient non-uniform average-case non-adaptive instance-checker for NP. We also suggest an approach to proving equivalence of the two notions of average-case hardness for PH. Second, we show unconditionally that error-prone average-case hardness is equivalent to errorless average-case hardness for P against NC¹ and for UP ∩ coUP against P. Third, we apply our results about errorless and error-prone average-case hardness to get new equivalences between hitting set generators and pseudo-random generators.
Feedback for Dagstuhl Publishing