LIPIcs.ITCS.2022.102.pdf
- Filesize: 0.73 MB
- 16 pages
A hash function family ℋ is correlation intractable for a t-input relation ℛ if, given a random function h chosen from ℋ, it is hard to find x_1,…,x_t such that ℛ(x_1,…,x_t,h(x₁),…,h(x_t)) is true. Among other applications, such hash functions are a crucial tool for instantiating the Fiat-Shamir heuristic in the plain model, including the only known NIZK for NP based on the learning with errors (LWE) problem (Peikert and Shiehian, CRYPTO 2019). We give a conceptually simple and generic construction of single-input CI hash functions from shift-hiding shiftable functions (Peikert and Shiehian, PKC 2018) satisfying an additional one-wayness property. This results in a clean abstract framework for instantiating CI, and also shows that a previously existing function family (PKC 2018) was already CI under the LWE assumption. In addition, our framework transparently generalizes to other settings, yielding new results: - We show how to instantiate certain forms of multi-input CI under the LWE assumption. Prior constructions either relied on a very strong "brute-force-is-best" type of hardness assumption (Holmgren and Lombardi, FOCS 2018) or were restricted to "output-only" relations (Zhandry, CRYPTO 2016). - We construct single-input CI hash functions from indistinguishability obfuscation (iO) and one-way permutations. Prior constructions relied essentially on variants of fully homomorphic encryption that are impossible to construct from such primitives. This result also generalizes to more expressive variants of multi-input CI under iO and additional standard assumptions.
Feedback for Dagstuhl Publishing