Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Narayanan, Hariharan; Shah, Rikhav; Srivastava, Nikhil https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-157044
URL:

; ;

A Spectral Approach to Polytope Diameter

pdf-format:


Abstract

We prove upper bounds on the graph diameters of polytopes in two settings. The first is a worst-case bound for integer polytopes in terms of the length of the description of the polytope (in bits) and the minimum angle between facets of its polar. The second is a smoothed analysis bound: given an appropriately normalized polytope, we add small Gaussian noise to each constraint. We consider a natural geometric measure on the vertices of the perturbed polytope (corresponding to the mean curvature measure of its polar) and show that with high probability there exists a "giant component" of vertices, with measure 1-o(1) and polynomial diameter. Both bounds rely on spectral gaps - of a certain Schrödinger operator in the first case, and a certain continuous time Markov chain in the second - which arise from the log-concavity of the volume of a simple polytope in terms of its slack variables.

BibTeX - Entry

@InProceedings{narayanan_et_al:LIPIcs.ITCS.2022.108,
  author =	{Narayanan, Hariharan and Shah, Rikhav and Srivastava, Nikhil},
  title =	{{A Spectral Approach to Polytope Diameter}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{108:1--108:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/15704},
  URN =		{urn:nbn:de:0030-drops-157044},
  doi =		{10.4230/LIPIcs.ITCS.2022.108},
  annote =	{Keywords: Polytope diameter, Markov Chain}
}

Keywords: Polytope diameter, Markov Chain
Seminar: 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)
Issue date: 2022
Date of publication: 25.01.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI