LIPIcs.ITCS.2022.111.pdf
- Filesize: 0.81 MB
- 23 pages
The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, which maintains a maximal (and hence 2-approximate) matching in O(n) worst-case update time in n-node graphs. We present the first deterministic algorithm which outperforms the folklore algorithm in terms of both approximation ratio and worst-case update time. Specifically, we give a (2-Ω(1))-approximate algorithm with O(m^{3/8}) = O(n^{3/4}) worst-case update time in n-node, m-edge graphs. For sufficiently small constant ε > 0, no deterministic (2+ε)-approximate algorithm with worst-case update time O(n^{0.99}) was known. Our second result is the first deterministic (2+ε)-approximate weighted matching algorithm with O_ε(1)⋅ O(∜{m}) = O_ε(1)⋅ O(√n) worst-case update time. Neither of our results were previously known to be achievable by a randomized algorithm against an adaptive adversary. Our main technical contributions are threefold: first, we characterize the tight cases for kernels, which are the well-studied matching sparsifiers underlying much of the (2+ε)-approximate dynamic matching literature. This characterization, together with multiple ideas - old and new - underlies our result for breaking the approximation barrier of 2. Our second technical contribution is the first example of a dynamic matching algorithm whose running time is improved due to improving the recourse of other dynamic matching algorithms. Finally, we show how to use dynamic bipartite matching algorithms as black-box subroutines for dynamic matching in general graphs without incurring the natural 3/2 factor in the approximation ratio which such approaches naturally incur (reminiscent of the integrality gap of the fractional matching polytope in general graphs).
Feedback for Dagstuhl Publishing