LIPIcs.CSL.2022.5.pdf
- Filesize: 0.79 MB
- 18 pages
We generalize to a rich dependent type theory a proof originally developed by Escardó that all System 𝚃 functionals are continuous. It relies on the definition of a syntactic model of Baclofen Type Theory, a type theory where dependent elimination must be strict, into the Calculus of Inductive Constructions. The model is given by three translations: the axiom translation, that adds an oracle to the context; the branching translation, based on the dialogue monad, turning every type into a tree; and finally, a layer of algebraic binary parametricity, binding together the two translations. In the resulting type theory, every function f : (ℕ → ℕ) → ℕ is externally continuous.
Feedback for Dagstuhl Publishing