Weighted Automata and Expressions over Pre-Rational Monoids

Authors Nicolas Baudru , Louis-Marie Dando , Nathan Lhote , Benjamin Monmege , Pierre-Alain Reynier, Jean-Marc Talbot



PDF
Thumbnail PDF

File

LIPIcs.CSL.2022.6.pdf
  • Filesize: 0.73 MB
  • 16 pages

Document Identifiers

Author Details

Nicolas Baudru
  • Aix Marseille Univ, CNRS, LIS, Marseille, France
Louis-Marie Dando
  • Aix Marseille Univ, CNRS, LIS, Marseille, France
Nathan Lhote
  • Aix Marseille Univ, CNRS, LIS, Marseille, France
Benjamin Monmege
  • Aix Marseille Univ, CNRS, LIS, Marseille, France
Pierre-Alain Reynier
  • Aix Marseille Univ, CNRS, LIS, Marseille, France
Jean-Marc Talbot
  • Aix Marseille Univ, CNRS, LIS, Marseille, France

Cite As Get BibTex

Nicolas Baudru, Louis-Marie Dando, Nathan Lhote, Benjamin Monmege, Pierre-Alain Reynier, and Jean-Marc Talbot. Weighted Automata and Expressions over Pre-Rational Monoids. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.CSL.2022.6

Abstract

The Kleene theorem establishes a fundamental link between automata and expressions over the free monoid. Numerous generalisations of this result exist in the literature; on one hand, lifting this result to a weighted setting has been widely studied. On the other hand, beyond the free monoid, different monoids can be considered: for instance, two-way automata, and even tree-walking automata, can be described by expressions using the free inverse monoid. In the present work, we aim at combining both research directions and consider weighted extensions of automata and expressions over a class of monoids that we call pre-rational, generalising both the free inverse monoid and graded monoids. The presence of idempotent elements in these pre-rational monoids leads in the weighted setting to consider infinite sums. To handle such sums, we will have to restrict ourselves to rationally additive semirings. Our main result is thus a generalisation of the Kleene theorem for pre-rational monoids and rationally additive semirings. As a corollary, we obtain a class of expressions equivalent to weighted two-way automata, as well as one for tree-walking automata.

Subject Classification

ACM Subject Classification
  • Theory of computation → Formal languages and automata theory
Keywords
  • Weighted Automata and Expressions
  • Inverse Monoids
  • Two-Way Automata

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string transformations. In CSL-LICS '14, pages 9:1-9:10. ACM, 2014. Google Scholar
  2. Nicolas Baudru, Louis-Marie Dando, Nathan Lhote, Benjamin Monmege, Pierre-Alain Reynier, and Jean-Marc Talbot. Weighted automata and expressions over pre-rational monoids, October 2021. URL: http://arxiv.org/abs/2110.12395.
  3. Nicolas Baudru and Pierre-Alain Reynier. From two-way transducers to regular function expressions. International Journal of Foundations of Computer Science, 31(6):843-873, 2020. Google Scholar
  4. Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Logical characterization of weighted pebble walking automata. In Thomas A. Henzinger and Dale Miller, editors, Proceedings of the joint meeting of the 23rd EACSL Annual Conference on Computer Science Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Vienna, Austria, July 2014. ACM. URL: https://doi.org/10.1145/2603088.2603118.
  5. R. Book, S. Even, Sheila A. Greibach, and G. Ott. Ambiguity in graphs and expressions. IEEE Transactions on Computers, 20(2):149-153, 1971. Google Scholar
  6. Christian Choffrut and Bruno Guillon. An algebraic characterization of unary two-way transducers. In MFCS 2014, volume 8634 of LNCS, pages 196-207. Springer, 2014. Google Scholar
  7. Luc Dartois, Paul Gastin, and Shankara Narayanan Krishna. SD-regular transducer expressions for aperiodic transformations. CoRR, 2021. URL: http://arxiv.org/abs/2101.07130.
  8. Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna. Regular transducer expressions for regular transformations. In LICS 2018, pages 315-324. ACM, 2018. Google Scholar
  9. Anne Dicky and David Janin. Two-way automata and regular languages of overlapping tiles. Fundamenta Informaticae, 142:1-33, 2015. Google Scholar
  10. Volker Diekert and Tobias Walter. Characterizing classes of regular languages using prefix codes of bounded synchronization delay. In ICALP 2016, volume 55 of LIPIcs, pages 129:1-129:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. Google Scholar
  11. Zoltán Ésik and Werner Kuich. Rationally additive semirings. Journal of Universal Computer Science, 8(2):173-183, 2002. Google Scholar
  12. Emmanuel Filiot and Pierre-Alain Reynier. Transducers, logic and algebra for functions of finite words. SIGLOG News, 3(3):4-19, 2016. Google Scholar
  13. Bruno Guillon. Two-wayness: Automata and Transducers. PhD thesis, Université Paris-Diderot and Universita di Milano, 2016. Google Scholar
  14. Sylvain Lombardy. Two-way representations and weighted automata. RAIRO - Theor. Inf. and Appl., 50(4):331-350, 2016. URL: https://doi.org/10.1051/ita/2016026.
  15. Sylvain Lombardy and Jacques Sakarovitch. The validity of weighted automata. Internat. J. Algebra Comput., 23:863-913, 2013. Google Scholar
  16. Benjamin Monmege. Specification and Verification of Quantitative Properties: Expressions, Logics, and Automata. Phd, ENS Cachan, France, 2013. Google Scholar
  17. Walter D Munn. Free inverse semigroups. Proceedings of the London Mathematical Society, 3(3):385-404, 1974. Google Scholar
  18. Jean-Pierre Pécuchet. Automates boustrophedon, semi-groupe de birget et monoide inversif libre. RAIRO Theor. Inf. and Appl., 19(1):71-100, 1985. Google Scholar
  19. Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009. Google Scholar
  20. Marcel-Paul Schützenberger. On the definition of a family of automata. Information and Control, 4:245-270, 1961. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail