Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Nguyễn, Lê Thành Dũng (Tito); Straßburger, Lutz https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-157521
URL:

;

BV and Pomset Logic Are Not the Same

pdf-format:


Abstract

BV and pomset logic are two logics that both conservatively extend unit-free multiplicative linear logic by a third binary connective, which (i) is non-commutative, (ii) is self-dual, and (iii) lies between the "par" and the "tensor". It was conjectured early on (more than 20 years ago), that these two logics, that share the same language, that both admit cut elimination, and whose connectives have essentially the same properties, are in fact the same. In this paper we show that this is not the case. We present a formula that is provable in pomset logic but not in BV.

BibTeX - Entry

@InProceedings{nguyen_et_al:LIPIcs.CSL.2022.32,
  author =	{Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito) and Stra{\ss}burger, Lutz},
  title =	{{BV and Pomset Logic Are Not the Same}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{32:1--32:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/15752},
  URN =		{urn:nbn:de:0030-drops-157521},
  doi =		{10.4230/LIPIcs.CSL.2022.32},
  annote =	{Keywords: proof nets, deep inference, pomset logic, system BV, cographs, dicographs, series-parallel orders}
}

Keywords: proof nets, deep inference, pomset logic, system BV, cographs, dicographs, series-parallel orders
Seminar: 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)
Issue date: 2022
Date of publication: 27.01.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI