Single-Source Shortest p-Disjoint Paths: Fast Computation and Sparse Preservers

Authors Davide Bilò , Gianlorenzo D'Angelo , Luciano Gualà , Stefano Leucci , Guido Proietti , Mirko Rossi



PDF
Thumbnail PDF

File

LIPIcs.STACS.2022.12.pdf
  • Filesize: 1.27 MB
  • 21 pages

Document Identifiers

Author Details

Davide Bilò
  • Department of Humanities and Social Sciences, University of Sassari, Italy
Gianlorenzo D'Angelo
  • Gran Sasso Science Institute, L'Aquila, Italy
Luciano Gualà
  • Department of Enterprise Engineering, University of Rome "Tor Vergata", Italy
Stefano Leucci
  • Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, Italy
Guido Proietti
  • Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, Italy
  • Institute for System Analysis and Computer Science "Antonio Ruberti" (IASI CNR), Rome, Italy
Mirko Rossi
  • Gran Sasso Science Institute, L'Aquila, Italy

Cite As Get BibTex

Davide Bilò, Gianlorenzo D'Angelo, Luciano Gualà, Stefano Leucci, Guido Proietti, and Mirko Rossi. Single-Source Shortest p-Disjoint Paths: Fast Computation and Sparse Preservers. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 12:1-12:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.STACS.2022.12

Abstract

Let G be a directed graph with n vertices, m edges, and non-negative edge costs. Given G, a fixed source vertex s, and a positive integer p, we consider the problem of computing, for each vertex t≠ s, p edge-disjoint paths of minimum total cost from s to t in G. Suurballe and Tarjan [Networks, 1984] solved the above problem for p = 2 by designing a O(m+nlog n) time algorithm which also computes a sparse single-source 2-multipath preserver, i.e., a subgraph containing 2 edge-disjoint paths of minimum total cost from s to every other vertex of G. The case p ≥ 3 was left as an open problem.
We study the general problem (p ≥ 2) and prove that any graph admits a sparse single-source p-multipath preserver with p(n-1) edges. This size is optimal since the in-degree of each non-root vertex v must be at least p. Moreover, we design an algorithm that requires O(pn² (p + log n)) time to compute both p edge-disjoint paths of minimum total cost from the source to all other vertices and an optimal-size single-source p-multipath preserver. The running time of our algorithm outperforms that of a natural approach that solves n-1 single-pair instances using the well-known successive shortest paths algorithm by a factor of Θ(m/(np)) and is asymptotically near optimal if p = O(1) and m = Θ(n²). Our results extend naturally to the case of p vertex-disjoint paths.

Subject Classification

ACM Subject Classification
  • Theory of computation → Sparsification and spanners
Keywords
  • multipath spanners
  • graph sparsification
  • edge-disjoint paths
  • min-cost flow

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A tutorial review. Comput. Sci. Rev., 37:100253, 2020. URL: https://doi.org/10.1016/j.cosrev.2020.100253.
  2. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows - theory, algorithms and applications. Prentice Hall, 1993. Google Scholar
  3. Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. Discret. Comput. Geom., 9:81-100, 1993. URL: https://doi.org/10.1007/BF02189308.
  4. Surender Baswana, Keerti Choudhary, Moazzam Hussain, and Liam Roditty. Approximate single-source fault tolerant shortest path. ACM Trans. Algorithms, 16(4):44:1-44:22, 2020. URL: https://doi.org/10.1145/3397532.
  5. Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault-tolerant subgraph for single-source reachability: General and optimal. SIAM J. Comput., 47(1):80-95, 2018. URL: https://doi.org/10.1137/16M1087643.
  6. Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-tolerant approximate shortest-path trees. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 18:1-18:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.STACS.2016.18.
  7. Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Fault-tolerant approximate shortest-path trees. Algorithmica, 80(12):3437-3460, 2018. URL: https://doi.org/10.1007/s00453-017-0396-z.
  8. Greg Bodwin. Linear size distance preservers. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 600-615. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.39.
  9. Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Preserving distances in very faulty graphs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 73:1-73:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.73.
  10. Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive spanners. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 855-872. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch61.
  11. Shiri Chechik, Quentin Godfroy, and David Peleg. Multipath spanners via fault-tolerant spanners. In Guy Even and Dror Rawitz, editors, Design and Analysis of Algorithms - First Mediterranean Conference on Algorithms, MedAlg 2012, Kibbutz Ein Gedi, Israel, December 3-5, 2012. Proceedings, volume 7659 of Lecture Notes in Computer Science, pages 108-119. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-34862-4_8.
  12. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/introduction-algorithms.
  13. Paul Erdős. Extremal problems in graph theory. In Theory of Graphs and its Applications. Academic Press, New York, 1965. Google Scholar
  14. Jeff Erickson. Algorithms. independent, 2019. Chapter G: Minimum-Cost Flows in the Extended Dance Remix available online. URL: http://jeffe.cs.illinois.edu/teaching/algorithms/.
  15. Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism problem. Theor. Comput. Sci., 10:111-121, 1980. URL: https://doi.org/10.1016/0304-3975(80)90009-2.
  16. Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences. J. Comput. Syst. Sci., 50(2):259-273, 1995. URL: https://doi.org/10.1006/jcss.1995.1022.
  17. Cyril Gavoille, Quentin Godfroy, and Laurent Viennot. Multipath spanners. In Boaz Patt-Shamir and Tínaz Ekim, editors, Structural Information and Communication Complexity, 17th International Colloquium, SIROCCO 2010, Sirince, Turkey, June 7-11, 2010. Proceedings, volume 6058 of Lecture Notes in Computer Science, pages 211-223. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-13284-1_17.
  18. Cyril Gavoille, Quentin Godfroy, and Laurent Viennot. Node-disjoint multipath spanners and their relationship with fault-tolerant spanners. In Antonio Fernández Anta, Giuseppe Lipari, and Matthieu Roy, editors, Principles of Distributed Systems - 15th International Conference, OPODIS 2011, Toulouse, France, December 13-16, 2011. Proceedings, volume 7109 of Lecture Notes in Computer Science, pages 143-158. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-25873-2_11.
  19. Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 127:1-127:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.127.
  20. Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. A brief note on single source fault tolerant reachability. CoRR, abs/1904.08150, 2019. URL: http://arxiv.org/abs/1904.08150.
  21. Merav Parter. Dual failure resilient BFS structure. In Chryssis Georgiou and Paul G. Spirakis, editors, Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 481-490. ACM, 2015. URL: https://doi.org/10.1145/2767386.2767408.
  22. Merav Parter and David Peleg. Sparse fault-tolerant BFS structures. ACM Trans. Algorithms, 13(1):11:1-11:24, 2016. URL: https://doi.org/10.1145/2976741.
  23. Merav Parter and David Peleg. Fault-tolerant approximate BFS structures. ACM Trans. Algorithms, 14(1):10:1-10:15, 2018. URL: https://doi.org/10.1145/3022730.
  24. David Peleg and Alejandro A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99-116, 1989. URL: https://doi.org/10.1002/jgt.3190130114.
  25. J. W. Suurballe and Robert Endre Tarjan. A quick method for finding shortest pairs of disjoint paths. Networks, 14(2):325-336, 1984. URL: https://doi.org/10.1002/net.3230140209.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail