Compact Representation for Matrices of Bounded Twin-Width

Authors Michał Pilipczuk, Marek Sokołowski, Anna Zych-Pawlewicz



PDF
Thumbnail PDF

File

LIPIcs.STACS.2022.52.pdf
  • Filesize: 0.74 MB
  • 14 pages

Document Identifiers

Author Details

Michał Pilipczuk
  • Institute of Informatics, University of Warsaw, Poland
Marek Sokołowski
  • Institute of Informatics, University of Warsaw, Poland
Anna Zych-Pawlewicz
  • Institute of Informatics, University of Warsaw, Poland

Cite AsGet BibTex

Michał Pilipczuk, Marek Sokołowski, and Anna Zych-Pawlewicz. Compact Representation for Matrices of Bounded Twin-Width. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 52:1-52:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.STACS.2022.52

Abstract

For every fixed d ∈ ℕ, we design a data structure that represents a binary n × n matrix that is d-twin-ordered. The data structure occupies 𝒪_d(n) bits, which is the least one could hope for, and can be queried for entries of the matrix in time 𝒪_d(log log n) per query.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • twin-width
  • compact representation
  • adjacency oracle

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width II: small classes. In 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 1977-1996. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.118.
  2. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: Max Independent Set, Min Dominating Set, and Coloring. In 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 35:1-35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Google Scholar
  3. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk. Twin-width IV: ordered graphs and matrices. CoRR, abs/2102.03117, 2021. URL: http://arxiv.org/abs/2102.03117.
  4. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-width and polynomial kernels. CoRR, abs/2107.02882, 2021. URL: http://arxiv.org/abs/2107.02882.
  5. Édouard Bonnet, Eun Jung Kim, Stéphan Thomasse, and Rémi Watrigant. Twin-width I: tractable FO model checking. In IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 601-612. IEEE Computer Society, 2020. Google Scholar
  6. Édouard Bonnet, Jaroslav Nešetřil, Patrice Ossona de Mendez, Sebastian Siebertz, and Stéphan Thomassé. Twin-width and permutations. CoRR, abs/2102.06880, 2021. URL: http://arxiv.org/abs/2102.06880.
  7. Timothy M. Chan. Persistent Predecessor Search and Orthogonal Point Location on the Word RAM. ACM Trans. Algorithms, 9(3):22:1-22:22, 2013. Google Scholar
  8. Josef Cibulka and Jan Kynčl. Better upper bounds on the Füredi-Hajnal limits of permutations, 2019. URL: http://arxiv.org/abs/1607.07491.
  9. Jan Dreier, Jakub Gajarský, Yiting Jiang, Patrice Ossona de Mendez, and Jean-Florent Raymond. Twin-width and generalized coloring numbers. CoRR, abs/2104.09360, 2021. URL: http://arxiv.org/abs/2104.09360.
  10. Jakub Gajarský, Michał Pilipczuk, and Szymon Toruńczyk. Stable graphs of bounded twin-width. CoRR, abs/2107.03711, 2021. URL: http://arxiv.org/abs/2107.03711.
  11. Shahin Kamali. Compact representation of graphs of small clique-width. Algorithmica, 80(7):2106-2131, 2018. Google Scholar
  12. Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley–Wilf conjecture. Journal of Combinatorial Theory, Series A, 107(1):153-160, 2004. Google Scholar
  13. Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In 38th Annual ACM Symposium on Theory of Computing, STOC 2006, pages 232-240. ACM, 2006. Google Scholar
  14. Michał Pilipczuk, Marek Sokołowski, and Anna Zych-Pawlewicz. Compact representation for matrices of bounded twin-width. CoRR, abs/2110.08106, 2021. URL: http://arxiv.org/abs/2110.08106.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail