OASIcs.Tokenomics.2021.13.pdf
- Filesize: 0.8 MB
- 23 pages
Automated market makers (AMMs) are smart contracts that automatically trade electronic assets according to a mathematical formula. This paper investigates how an AMM’s formula affects the interests of liquidity providers, who endow the AMM with assets, and traders, who exchange one asset for another at the AMM’s rates. Linear slippage measures how a trade’s size affects the trader’s return, angular slippage measures how a trade’s size affects the subsequent market price, divergence loss measures the opportunity cost of providers' investments, and load balances the costs to traders and providers. We give formal definitions for these costs, show that they obey certain conservation laws: these costs can be shifted around but never fully eliminated. We analyze how these costs behave under composition, when simple individual AMMs are linked to form more complex networks of AMMs.
Feedback for Dagstuhl Publishing