LIPIcs.SoCG.2022.8.pdf
- Filesize: 0.81 MB
- 16 pages
In this paper, we focus on one particular instance of the shape reconstruction problem, in which the shape we wish to reconstruct is an orientable smooth submanifold of the Euclidean space. Assuming we have as input a simplicial complex K that approximates the submanifold (such as the Čech complex or the Rips complex), we recast the reconstruction problem as a 𝓁₁-norm minimization problem in which the optimization variable is a chain of K. Providing that K satisfies certain reasonable conditions, we prove that the considered minimization problem has a unique solution which triangulates the submanifold and coincides with the flat Delaunay complex introduced and studied in a companion paper [D. Attali and A. Lieutier, 2022]. Since the objective is a weighted 𝓁₁-norm and the contraints are linear, the triangulation process can thus be implemented by linear programming.
Feedback for Dagstuhl Publishing