LIPIcs.SoCG.2022.9.pdf
- Filesize: 0.75 MB
- 17 pages
We show that reconstructing a curve in ℝ^d for d ≥ 2 from a 0.66-sample is always possible using an algorithm similar to the classical NN-Crust algorithm. Previously, this was only known to be possible for 0.47-samples in ℝ² and 1/3-samples in ℝ^d for d ≥ 3. In addition, we show that there is not always a unique way to reconstruct a curve from a 0.72-sample; this was previously only known for 1-samples. We also extend this non-uniqueness result to hypersurfaces in all higher dimensions.
Feedback for Dagstuhl Publishing