Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs

Authors Karl Bringmann, Sándor Kisfaludi‑Bak, Marvin Künnemann, André Nusser , Zahra Parsaeian



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2022.21.pdf
  • Filesize: 0.83 MB
  • 16 pages

Document Identifiers

Author Details

Karl Bringmann
  • Universität des Saarlandes, Saarbrücken, Germany
  • Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
Sándor Kisfaludi‑Bak
  • Aalto University, Espoo, Finland
Marvin Künnemann
  • Institute for Theoretical Studies, ETH Zürich, Switzerland
André Nusser
  • BARC, University of Copenhagen, Denmark
Zahra Parsaeian
  • Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Cite As Get BibTex

Karl Bringmann, Sándor Kisfaludi‑Bak, Marvin Künnemann, André Nusser, and Zahra Parsaeian. Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.SoCG.2022.21

Abstract

We initiate the study of diameter computation in geometric intersection graphs from the fine-grained complexity perspective. A geometric intersection graph is a graph whose vertices correspond to some shapes in d-dimensional Euclidean space, such as balls, segments, or hypercubes, and whose edges correspond to pairs of intersecting shapes. The diameter of a graph is the largest distance realized by a pair of vertices in the graph.
Computing the diameter in near-quadratic time is possible in several classes of intersection graphs [Chan and Skrepetos 2019], but it is not at all clear if these algorithms are optimal, especially since in the related class of planar graphs the diameter can be computed in 𝒪̃(n^{5/3}) time [Cabello 2019, Gawrychowski et al. 2021].
In this work we (conditionally) rule out sub-quadratic algorithms in several classes of intersection graphs, i.e., algorithms of running time 𝒪(n^{2-δ}) for some δ > 0. In particular, there are no sub-quadratic algorithms already for fat objects in small dimensions: unit balls in ℝ³ or congruent equilateral triangles in ℝ². For unit segments and congruent equilateral triangles, we can even rule out strong sub-quadratic approximations already in ℝ². It seems that the hardness of approximation may also depend on dimensionality: for axis-parallel unit hypercubes in ℝ^{12}, distinguishing between diameter 2 and 3 needs quadratic time (ruling out (3/2-ε)- approximations), whereas for axis-parallel unit squares, we give an algorithm that distinguishes between diameter 2 and 3 in near-linear time.
Note that many of our lower bounds match the best known algorithms up to sub-polynomial factors. Ultimately, this fine-grained perspective may enable us to determine for which shapes we can have efficient algorithms and approximation schemes for diameter computation.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Hardness in P
  • Geometric Intersection Graph
  • Graph Diameter
  • Orthogonal Vectors
  • Hyperclique Detection

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More consequences of falsifying SETH and the orthogonal vectors conjecture. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Pro. 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018), pages 253-266. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188938.
  2. Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method to algorithm design. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '15, pages 218-230. SIAM, 2015. Google Scholar
  3. Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167-1181, 1999. URL: https://doi.org/10.1137/S0097539796303421.
  4. Haozhe An, Mohit Jayanti Gurumukhani, Russell Impagliazzo, Michael Jaber, Marvin Künnemann, and Maria Paula Parga Nina. The fine-grained complexity of multi-dimensional ordering properties. In Petr A. Golovach and Meirav Zehavi, editors, Proc. 16th International Symposium on Parameterized and Exact Computation (IPEC 2021), volume 214 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1-3:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.3.
  5. Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein. Toward tight approximation bounds for graph diameter and eccentricities. SIAM J. Comput., 50(4):1155-1199, 2021. URL: https://doi.org/10.1137/18M1226737.
  6. J. L. Bentley. Solutions to Klee’s rectangle problems. Unpublished manuscript, 1977. Google Scholar
  7. Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Panos Giannopoulos, Eun Jung Kim, Pawel Rzazewski, Florian Sikora, and Stéphan Thomassé. EPTAS and subexponential algorithm for maximum clique on disk and unit ball graphs. J. ACM, 68(2):9:1-9:38, 2021. URL: https://doi.org/10.1145/3433160.
  8. Édouard Bonnet. 4 vs 7 sparse undirected unweighted diameter is SETH-hard at time n^4/3. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 34:1-34:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.34.
  9. Édouard Bonnet. Inapproximability of diameter in super-linear time: Beyond the 5/3 ratio. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 17:1-17:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.STACS.2021.17.
  10. Andreas Brandstädt and Feodor F. Dragan. On linear and circular structure of (claw, net)-free graphs. Discret. Appl. Math., 129(2-3):285-303, 2003. URL: https://doi.org/10.1016/S0166-218X(02)00571-1.
  11. Karl Bringmann, Nick Fischer, and Marvin Künnemann. A fine-grained analogue of Schaefer’s theorem in P: dichotomy of ∃^k ∀-quantified first-order graph properties. In Amir Shpilka, editor, Proc. 34th Computational Complexity Conference (CCC 2019), volume 137 of LIPIcs, pages 31:1-31:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.CCC.2019.31.
  12. Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs. ACM Trans. Algorithms, 15(2):21:1-21:38, 2019. URL: https://doi.org/10.1145/3218821.
  13. Massimo Cairo, Roberto Grossi, and Romeo Rizzi. New bounds for approximating extremal distances in undirected graphs. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 363-376. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch27.
  14. Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms, 46(2):178-189, 2003. URL: https://doi.org/10.1016/S0196-6774(02)00294-8.
  15. Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in unit-disk graphs in slightly subquadratic time. In Seok-Hee Hong, editor, 27th International Symposium on Algorithms and Computation, ISAAC 2016, December 12-14, 2016, Sydney, Australia, volume 64 of LIPIcs, pages 24:1-24:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2016.24.
  16. Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection graphs. J. Comput. Geom., 10:27-41, 2019. Google Scholar
  17. Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and distance oracles in weighted unit-disk graphs. J. Comput. Geom., 10(2):3-20, 2019. URL: https://doi.org/10.20382/jocg.v10i2a2.
  18. Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more: Quickly derandomizing Razborov-Smolensky. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '16, pages 1246-1255. SIAM, 2016. Google Scholar
  19. Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert Endre Tarjan, and Virginia Vassilevska Williams. Better approximation algorithms for the graph diameter. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1041-1052. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.78.
  20. Derek G. Corneil. Lexicographic breadth first search - A survey. In Juraj Hromkovic, Manfred Nagl, and Bernhard Westfechtel, editors, Graph-Theoretic Concepts in Computer Science, 30th International Workshop,WG 2004, Bad Honnef, Germany, June 21-23, 2004, Revised Papers, volume 3353 of Lecture Notes in Computer Science, pages 1-19. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-30559-0_1.
  21. Derek G. Corneil, Feodor F. Dragan, Michel Habib, and Christophe Paul. Diameter determination on restricted graph families. Discret. Appl. Math., 113(2-3):143-166, 2001. URL: https://doi.org/10.1016/S0166-218X(00)00281-X.
  22. Derek G. Corneil, Feodor F. Dragan, and Ekkehard Köhler. On the power of BFS to determine a graph’s diameter. Networks, 42(4):209-222, 2003. URL: https://doi.org/10.1002/net.10098.
  23. Mina Dalirrooyfard, Ray Li, and Virginia Vassilevska Williams. Hardness of approximate diameter: Now for undirected graphs. CoRR, abs/2106.06026, 2021. URL: http://arxiv.org/abs/2106.06026.
  24. Mina Dalirrooyfard and Nicole Wein. Tight conditional lower bounds for approximating diameter in directed graphs. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1697-1710. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451130.
  25. Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, and Nicole Wein. Tight approximation algorithms for bichromatic graph diameter and related problems. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 47:1-47:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.47.
  26. Feodor F. Dragan. Almost diameter of a house-hole-free graph in linear time via LexBFS. Discret. Appl. Math., 95(1-3):223-239, 1999. URL: https://doi.org/10.1016/S0166-218X(99)00077-3.
  27. Feodor F. Dragan, Falk Nicolai, and Andreas Brandstädt. LexBFS-orderings and powers of graphs. In Fabrizio d'Amore, Paolo Giulio Franciosa, and Alberto Marchetti-Spaccamela, editors, Graph-Theoretic Concepts in Computer Science, pages 166-180, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. Google Scholar
  28. Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and its applications. SIAM J. Comput., 35(1):151-169, 2005. URL: https://doi.org/10.1137/S0097539703436357.
  29. Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n^5/3) time. SIAM J. Comput., 50(2):509-554, 2021. URL: https://doi.org/10.1137/18M1193402.
  30. Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM, 32(1):130-136, 1985. URL: https://doi.org/10.1145/2455.214106.
  31. Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S. S. Ravi, Daniel J. Rosenkrantz, and Richard Edwin Stearns. NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. J. Algorithms, 26(2):238-274, 1998. URL: https://doi.org/10.1006/jagm.1997.0903.
  32. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001. Google Scholar
  33. Paul Koebe. Kontaktprobleme der konformen Abbildung. Hirzel, 1936. Google Scholar
  34. Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad hoc networks beyond unit disk graphs. Wirel. Networks, 14(5):715-729, 2008. URL: https://doi.org/10.1007/s11276-007-0045-6.
  35. H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. On finding the maxima of a set of vectors. J. ACM, 22(4):469-476, 1975. URL: https://doi.org/10.1145/321906.321910.
  36. Marvin Künnemann and Dániel Marx. Finding small satisfying assignments faster than brute force: A fine-grained perspective into boolean constraint satisfaction. In Shubhangi Saraf, editor, Proc. 35th Computational Complexity Conference (CCC 2020), volume 169 of LIPIcs, pages 27:1-27:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.CCC.2020.27.
  37. Ray Li. Settling SETH vs. approximate sparse directed unweighted diameter (up to (NU)NSETH). In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1684-1696. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451045.
  38. Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for shortest cycles and paths in sparse graphs. In Artur Czumaj, editor, Proc. 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), 2018. URL: https://doi.org/10.1137/1.9781611975031.80.
  39. Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae, 026(2):415-419, 1985. Google Scholar
  40. Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and radius of sparse graphs. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 515-524. ACM, 2013. URL: https://doi.org/10.1145/2488608.2488673.
  41. Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst. Sci., 51(3):400-403, 1995. URL: https://doi.org/10.1006/jcss.1995.1078.
  42. Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in linear time. J. ACM, 46(3):362-394, 1999. URL: https://doi.org/10.1145/316542.316548.
  43. Jan van Leeuwen and Derick Wood. The measure problem for rectangular ranges in d-space. J. Algorithms, 2(3):282-300, 1981. URL: https://doi.org/10.1016/0196-6774(81)90027-4.
  44. Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In Proceedings of the International Congress of Mathematicians, ICM '18, pages 3447-3487, 2018. Google Scholar
  45. Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci., 348(2-3):357-365, 2005. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail