Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Bringmann, Karl; Kisfaludi‑Bak, Sándor; Künnemann, Marvin; Nusser, André; Parsaeian, Zahra https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-160294
URL:

; ; ; ;

Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs

pdf-format:


Abstract

We initiate the study of diameter computation in geometric intersection graphs from the fine-grained complexity perspective. A geometric intersection graph is a graph whose vertices correspond to some shapes in d-dimensional Euclidean space, such as balls, segments, or hypercubes, and whose edges correspond to pairs of intersecting shapes. The diameter of a graph is the largest distance realized by a pair of vertices in the graph.
Computing the diameter in near-quadratic time is possible in several classes of intersection graphs [Chan and Skrepetos 2019], but it is not at all clear if these algorithms are optimal, especially since in the related class of planar graphs the diameter can be computed in 𝒪̃(n^{5/3}) time [Cabello 2019, Gawrychowski et al. 2021].
In this work we (conditionally) rule out sub-quadratic algorithms in several classes of intersection graphs, i.e., algorithms of running time 𝒪(n^{2-δ}) for some δ > 0. In particular, there are no sub-quadratic algorithms already for fat objects in small dimensions: unit balls in ℝ³ or congruent equilateral triangles in ℝ². For unit segments and congruent equilateral triangles, we can even rule out strong sub-quadratic approximations already in ℝ². It seems that the hardness of approximation may also depend on dimensionality: for axis-parallel unit hypercubes in ℝ^{12}, distinguishing between diameter 2 and 3 needs quadratic time (ruling out (3/2-ε)- approximations), whereas for axis-parallel unit squares, we give an algorithm that distinguishes between diameter 2 and 3 in near-linear time.
Note that many of our lower bounds match the best known algorithms up to sub-polynomial factors. Ultimately, this fine-grained perspective may enable us to determine for which shapes we can have efficient algorithms and approximation schemes for diameter computation.

BibTeX - Entry

@InProceedings{bringmann_et_al:LIPIcs.SoCG.2022.21,
  author =	{Bringmann, Karl and Kisfaludi‑Bak, S\'{a}ndor and K\"{u}nnemann, Marvin and Nusser, Andr\'{e} and Parsaeian, Zahra},
  title =	{{Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16029},
  URN =		{urn:nbn:de:0030-drops-160294},
  doi =		{10.4230/LIPIcs.SoCG.2022.21},
  annote =	{Keywords: Hardness in P, Geometric Intersection Graph, Graph Diameter, Orthogonal Vectors, Hyperclique Detection}
}

Keywords: Hardness in P, Geometric Intersection Graph, Graph Diameter, Orthogonal Vectors, Hyperclique Detection
Seminar: 38th International Symposium on Computational Geometry (SoCG 2022)
Issue date: 2022
Date of publication: 01.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI