Tracking Dynamical Features via Continuation and Persistence

Authors Tamal K. Dey , Michał Lipiński , Marian Mrozek , Ryan Slechta



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2022.35.pdf
  • Filesize: 1.39 MB
  • 17 pages

Document Identifiers

Author Details

Tamal K. Dey
  • Department of Computer Science, Purdue University, West Lafayette, IN, USA
Michał Lipiński
  • Division of Computational Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
Marian Mrozek
  • Division of Computational Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
Ryan Slechta
  • Department of Computer Science, Purdue University, West Lafayette, IN, USA

Cite As Get BibTex

Tamal K. Dey, Michał Lipiński, Marian Mrozek, and Ryan Slechta. Tracking Dynamical Features via Continuation and Persistence. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 35:1-35:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.SoCG.2022.35

Abstract

Multivector fields and combinatorial dynamical systems have recently become a subject of interest due to their potential for use in computational methods. In this paper, we develop a method to track an isolated invariant set - a salient feature of a combinatorial dynamical system - across a sequence of multivector fields. This goal is attained by placing the classical notion of the "continuation" of an isolated invariant set in the combinatorial setting. In particular, we give a "Tracking Protocol" that, when given a seed isolated invariant set, finds a canonical continuation of the seed across a sequence of multivector fields. In cases where it is not possible to continue, we show how to use zigzag persistence to track homological features associated with the isolated invariant sets. This construction permits viewing continuation as a special case of persistence.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Algebraic topology
  • Theory of computation → Computational geometry
Keywords
  • combinatorial dynamical systems
  • continuation
  • index pair
  • Conley index
  • persistent homology

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Madjid Allili, Tomasz Kaczynski, Claudia Landi, and Filippo Masoni. Acyclic partial matchings for multidimensional persistence: Algorithm and combinatorial interpretation. J. Math. Imaging Vision, 61:174-192, 2019. URL: https://doi.org/10.1007/s10851-018-0843-8.
  2. Bogdan Batko, Tomasz Kaczynski, Marian Mrozek, and Thomas Wanner. Linking combinatorial and classical dynamics: Conley index and Morse decompositions. Found. Comput. Math., 20(5):967-1012, 2020. Google Scholar
  3. Gunnar Carlsson and Vin de Silva. Zigzag persistence. Found. Comput. Math., 10(4):367-405, August 2010. URL: https://doi.org/10.1007/s10208-010-9066-0.
  4. Charles Conley. Isolated invariant sets and the Morse index. In CBMS Reg. Conf. Ser. Math., volume 38, 1978. Google Scholar
  5. Tamal K. Dey, Marian Mrozek, and Ryan Slechta. Persistence of the Conley index in combinatorial dynamical systems. In Proceedings of the 36th International Symposium on Computational Geometry, pages 37:1-37:17, June 2020. URL: https://doi.org/10.4230/LIPIcs.SoCG.2020.37.
  6. Tamal K. Dey, Marian Mrozek, and Ryan Slechta. Persistence of Conley-Morse graphs in combinatorial dynamical systems. SIAM J. Appl. Dyn. Syst., 2022. To appear. Google Scholar
  7. Tamal K. Dey and Yusu Wang. Computational Topology for Data Analysis. Cambridge University Press, 2022. URL: https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.pdf.
  8. Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. American Mathematical Society, January 2010. Google Scholar
  9. Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and simplification. Discrete & Computational Geometry, 28(4):511-533, November 2002. URL: https://doi.org/10.1007/s00454-002-2885-2.
  10. Robin Forman. Combinatorial vector fields and dynamical systems. Math. Z., 228:629-681, 1998. URL: https://doi.org/10.1007/PL00004638.
  11. Robin Forman. Morse theory for cell complexes. Adv. Math., 134:90-145, 1998. URL: https://doi.org/10.1006/aima.1997.1650.
  12. David Gunther, Jan Reininghaus, Ingrid Hotz, and Hubert Wagner. Memory-efficient computation of persistent homology for 3d images using discrete Morse theory. In 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images, pages 25-32, 2011. URL: https://doi.org/10.1109/SIBGRAPI.2011.24.
  13. Allen Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002. Google Scholar
  14. Tomasz Kaczynski, Marian Mrozek, and Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. J. Comput. Dyn., 3(1):17-50, 2016. URL: https://doi.org/10.3934/jcd.2016002.
  15. Henry King, Kevin Knudson, and Neža Mramor. Generating discrete Morse functions from point data. Exp. Math., 14:435-444, 2005. Google Scholar
  16. Kevin Knudson. Morse Theory Smooth and Discrete. World Scientific, 2015. Google Scholar
  17. Kevin Knudson and Bei Wang. Discrete Stratified Morse Theory: A User’s Guide. In 34th International Symposium on Computational Geometry (SoCG 2018), volume 99, pages 54:1-54:14, 2018. URL: https://doi.org/10.4230/LIPIcs.SoCG.2018.54.
  18. Claudia Landi and Sara Scaramuccia. Relative-perfectness of discrete gradient vector fields and multi-parameter persistent homology. J. Comb. Optim., 2021. Google Scholar
  19. Michał Lipiński. Morse-Conley-Forman theory for generalized combinatorial multivector fields on finite topological spaces. PhD thesis, Jagiellonian University, 2021. Google Scholar
  20. Michał Lipiński, Jacek Kubica, Marian Mrozek, and Thomas Wanner. Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces, 2020. URL: http://arxiv.org/abs/1911.12698.
  21. Marian Mrozek. Conley-Morse-Forman theory for combinatorial multivector fields on Lefschetz complexes. Found. Comput. Math., 17(6):1585-1633, December 2017. URL: https://doi.org/10.1007/s10208-016-9330-z.
  22. Marian Mrozek, Roman Srzednicki, Justin Thorpe, and Thomas Wanner. Combinatorial vs. classical dynamics: Recurrence. Commun. Nonlinear Sci. Numer. Simul., 108:106226(1-30), 2022. URL: https://doi.org/10.1016/j.cnsns.2021.106226.
  23. Marian Mrozek and Thomas Wanner. Creating semiflows on simplicial complexes from combinatorial vector fields. J. Differential Equations, 304:375-434, 2021. Google Scholar
  24. James Munkres. Topology. Featured Titles for Topology Series. Prentice Hall, Incorporated, 2000. Google Scholar
  25. Vanessa Robins, Peter John Wood, and Adrian P. Sheppard. Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1646-1658, 2011. URL: https://doi.org/10.1109/TPAMI.2011.95.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail