Fix p ∈ [1,∞), K ∈ (0,∞) and a probability measure μ. We prove that for every n ∈ ℕ, ε ∈ (0,1) and x₁,…,x_n ∈ L_p(μ) with ‖max_{i ∈ {1,…,n}}|x_i|‖_{L_p(μ)} ≤ K, there exists d ≤ (32e² (2K)^{2p}log n)/ε² and vectors y₁,…, y_n ∈ 𝓁_p^d such that ∀i,j∈{1,…,n}, ‖x_i-x_j‖^p_{L_p(μ)}-ε ≤ ‖y_i-y_j‖_{𝓁_p^d}^p ≤ ‖x_i-x_j‖^p_{L_p(μ)}+ε. Moreover, the argument implies the existence of a greedy algorithm which outputs {y_i}_{i = 1}ⁿ after receiving {x_i}_{i = 1}ⁿ as input. The proof relies on a derandomized version of Maurey’s empirical method (1981) combined with a combinatorial idea of Ball (1990) and a suitable change of measure. Motivated by the above embedding, we introduce the notion of ε-isometric dimension reduction of the unit ball B_E of a normed space (E,‖⋅‖_E) and we prove that B_{𝓁_p} does not admit ε-isometric dimension reduction by linear operators for any value of p≠2.
@InProceedings{eskenazis:LIPIcs.SoCG.2022.40, author = {Eskenazis, Alexandros}, title = {{\epsilon-Isometric Dimension Reduction for Incompressible Subsets of 𝓁\underlinep}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {40:1--40:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.40}, URN = {urn:nbn:de:0030-drops-160486}, doi = {10.4230/LIPIcs.SoCG.2022.40}, annote = {Keywords: Dimension reduction, \epsilon-isometric embedding, Maurey’s empirical method, change of measure} }
Feedback for Dagstuhl Publishing