LIPIcs.SoCG.2022.49.pdf
- Filesize: 1.24 MB
- 17 pages
Let S ⊆ ℝ² be a set of n planar sites, such that each s ∈ S has an associated radius r_s > 0. Let 𝒟(S) be the disk intersection graph for S. It has vertex set S and an edge between two distinct sites s, t ∈ S if and only if the disks with centers s, t and radii r_s, r_t intersect. Our goal is to design data structures that maintain the connectivity structure of 𝒟(S) as sites are inserted and/or deleted. First, we consider unit disk graphs, i.e., r_s = 1, for all s ∈ S. We describe a data structure that has O(log² n) amortized update and O(log n/log log n) amortized query time. Second, we look at disk graphs with bounded radius ratio Ψ, i.e., for all s ∈ S, we have 1 ≤ r_s ≤ Ψ, for a Ψ ≥ 1 known in advance. In the fully dynamic case, we achieve amortized update time O(Ψ λ₆(log n) log⁷ n) and query time O(log n/log log n), where λ_s(n) is the maximum length of a Davenport-Schinzel sequence of order s on n symbols. In the incremental case, where only insertions are allowed, we get logarithmic dependency on Ψ, with O(α(n)) query time and O(logΨ λ₆(log n) log⁷ n) update time. For the decremental setting, where only deletions are allowed, we first develop an efficient disk revealing structure: given two sets R and B of disks, we can delete disks from R, and upon each deletion, we receive a list of all disks in B that no longer intersect the union of R. Using this, we get decremental data structures with amortized query time O(log n/log log n) that support m deletions in O((nlog⁵ n + m log⁷ n) λ₆(log n) + nlog Ψ log⁴n) overall time for bounded radius ratio Ψ and O((nlog⁶ n + m log⁸n) λ₆(log n)) for arbitrary radii.
Feedback for Dagstuhl Publishing