Kaplan, Haim ;
Kauer, Alexander ;
Klost, Katharina ;
Knorr, Kristin ;
Mulzer, Wolfgang ;
Roditty, Liam ;
Seiferth, Paul
Dynamic Connectivity in Disk Graphs
Abstract
Let S ⊆ ℝ² be a set of n planar sites, such that each s ∈ S has an associated radius r_s > 0. Let 𝒟(S) be the disk intersection graph for S. It has vertex set S and an edge between two distinct sites s, t ∈ S if and only if the disks with centers s, t and radii r_s, r_t intersect. Our goal is to design data structures that maintain the connectivity structure of 𝒟(S) as sites are inserted and/or deleted.
First, we consider unit disk graphs, i.e., r_s = 1, for all s ∈ S. We describe a data structure that has O(log² n) amortized update and O(log n/log log n) amortized query time. Second, we look at disk graphs with bounded radius ratio Ψ, i.e., for all s ∈ S, we have 1 ≤ r_s ≤ Ψ, for a Ψ ≥ 1 known in advance. In the fully dynamic case, we achieve amortized update time O(Ψ λ₆(log n) log⁷ n) and query time O(log n/log log n), where λ_s(n) is the maximum length of a DavenportSchinzel sequence of order s on n symbols. In the incremental case, where only insertions are allowed, we get logarithmic dependency on Ψ, with O(α(n)) query time and O(logΨ λ₆(log n) log⁷ n) update time. For the decremental setting, where only deletions are allowed, we first develop an efficient disk revealing structure: given two sets R and B of disks, we can delete disks from R, and upon each deletion, we receive a list of all disks in B that no longer intersect the union of R. Using this, we get decremental data structures with amortized query time O(log n/log log n) that support m deletions in O((nlog⁵ n + m log⁷ n) λ₆(log n) + nlog Ψ log⁴n) overall time for bounded radius ratio Ψ and O((nlog⁶ n + m log⁸n) λ₆(log n)) for arbitrary radii.
BibTeX  Entry
@InProceedings{kaplan_et_al:LIPIcs.SoCG.2022.49,
author = {Kaplan, Haim and Kauer, Alexander and Klost, Katharina and Knorr, Kristin and Mulzer, Wolfgang and Roditty, Liam and Seiferth, Paul},
title = {{Dynamic Connectivity in Disk Graphs}},
booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)},
pages = {49:149:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {9783959772273},
ISSN = {18688969},
year = {2022},
volume = {224},
editor = {Goaoc, Xavier and Kerber, Michael},
publisher = {Schloss Dagstuhl  LeibnizZentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16057},
URN = {urn:nbn:de:0030drops160572},
doi = {10.4230/LIPIcs.SoCG.2022.49},
annote = {Keywords: Disk Graphs, Connectivity, Lower Envelopes}
}
01.06.2022
Keywords: 

Disk Graphs, Connectivity, Lower Envelopes 
Seminar: 

38th International Symposium on Computational Geometry (SoCG 2022)

Issue date: 

2022 
Date of publication: 

01.06.2022 