LIPIcs.SoCG.2022.52.pdf
- Filesize: 0.85 MB
- 14 pages
Suppose we are given a pair of points s, t and a set 𝒮 of n geometric objects in the plane, called obstacles. We show that in polynomial time one can construct an auxiliary (multi-)graph G with vertex set 𝒮 and every edge labeled from {0, 1}, such that a set 𝒮_d ⊆ 𝒮 of obstacles separates s from t if and only if G[𝒮_d] contains a cycle whose sum of labels is odd. Using this structural characterization of separating sets of obstacles we obtain the following algorithmic results. In the Obstacle-removal problem the task is to find a curve in the plane connecting s to t intersecting at most q obstacles. We give a 2.3146^q n^{O(1)} algorithm for Obstacle-removal, significantly improving upon the previously best known q^{O(q³)} n^{O(1)} algorithm of Eiben and Lokshtanov (SoCG'20). We also obtain an alternative proof of a constant factor approximation algorithm for Obstacle-removal, substantially simplifying the arguments of Kumar et al. (SODA'21). In the Generalized Points-separation problem input consists of the set 𝒮 of obstacles, a point set A of k points and p pairs (s₁, t₁), … (s_p, t_p) of points from A. The task is to find a minimum subset 𝒮_r ⊆ 𝒮 such that for every i, every curve from s_i to t_i intersects at least one obstacle in 𝒮_r. We obtain 2^{O(p)} n^{O(k)}-time algorithm for Generalized Points-separation. This resolves an open problem of Cabello and Giannopoulos (SoCG'13), who asked about the existence of such an algorithm for the special case where (s₁, t₁), … (s_p, t_p) contains all the pairs of points in A. Finally, we improve the running time of our algorithm to f(p,k) ⋅ n^{O(√k)} when the obstacles are unit disks, where f(p,k) = 2^{O(p)} k^{O(k)}, and show that, assuming the Exponential Time Hypothesis (ETH), the running time dependence on k of our algorithms is essentially optimal.
Feedback for Dagstuhl Publishing