An Interactive Framework for Reconfiguration in the Sliding Square Model (Media Exposition)

Authors Willem Sonke , Jules Wulms



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2022.70.pdf
  • Filesize: 0.75 MB
  • 4 pages

Document Identifiers

Author Details

Willem Sonke
  • TU Eindhoven, The Netherlands
Jules Wulms
  • TU Wien, Austria

Acknowledgements

We thank Bettina Speckmann for her useful comments on a draft of this paper.

Cite As Get BibTex

Willem Sonke and Jules Wulms. An Interactive Framework for Reconfiguration in the Sliding Square Model (Media Exposition). In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 70:1-70:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.SoCG.2022.70

Abstract

We describe SquareSlider, a software framework for visualizing reconfiguration algorithms of modular robots in the sliding square model. In this model, a robot consists of a configuration of squares in a rectangular grid, which can reconfigure through a fixed set of possible moves. SquareSlider is a web-based tool that implements an easy-to-use interface allowing the user to build a configuration, run a reconfiguration algorithm on it, and examine the results.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Modular robots
  • Implementation
  • Visualization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin Flatland, Matias Korman, Belén Palop, Irene Parada, André van Renssen, and Vera Sacristán. Universal reconfiguration of facet-connected modular robots by pivots: The O(1) musketeers. Algorithmica, 83(5):1316-1351, 2021. URL: https://doi.org/10.1007/s00453-020-00784-6.
  2. Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg, Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Characterizing universal reconfigurability of modular pivoting robots. In Proc. 37th International Symposium on Computational Geometry (SoCG), pages 10:1-10:20, 2021. URL: https://doi.org/10.4230/LIPIcs.SoCG.2021.10.
  3. Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting squares: Input-sensitive in-place reconfiguration of sliding squares. CoRR, abs/2105.07997, 2021. URL: http://arxiv.org/abs/2105.07997.
  4. Nora Ayanian, Paul J. White, Ádám Hálász, Mark Yim, and Vijay Kumar. Stochastic control for self-assembly of XBots. In Proc. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE), pages 1169-1176, 2008. URL: https://doi.org/10.1115/DETC2008-49535.
  5. Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics, 22:37-50, 2006. URL: https://doi.org/10.1007/s00373-005-0640-1.
  6. Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous self-reconfiguring robots. In Proc. 2003 IEEE/RSJ International Conference on Intelligent Robots and System, volume 3, pages 2460-2467, 2003. URL: https://doi.org/10.1109/IROS.2003.1249239.
  7. Joel Moreno and Vera Sacristán. Reconfiguring sliding squares in-place by flooding. In Proc. 36th European Workshop on Computational Geometry (EuroCG), pages 32:1-32:7, 2020. Google Scholar
  8. Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfiguration planning for pivoting cube modular robots. In Proc. 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 1933-1940, 2015. URL: https://doi.org/10.1109/ICRA.2015.7139451.
  9. Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric Klavins, and Gregory S. Chirikjian. Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine, 14(1):43-52, 2007. URL: https://doi.org/10.1109/MRA.2007.339623.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail