LIPIcs.AofA.2022.12.pdf
- Filesize: 0.8 MB
- 17 pages
Affirmative Sampling is a practical and efficient novel algorithm to obtain random samples of distinct elements from a data stream. Its most salient feature is that the size S of the sample will, on expectation, grow with the (unknown) number n of distinct elements in the data stream. As any distinct element has the same probability to be sampled, and the sample size is greater when the "diversity" (the number of distinct elements) is greater, the samples that Affirmative Sampling delivers are more representative than those produced by any scheme where the sample size is fixed a priori - hence its name. Our algorithm is straightforward to implement, and several implementations already exist.
Feedback for Dagstuhl Publishing