LIPIcs.CPM.2022.8.pdf
- Filesize: 0.81 MB
- 23 pages
We study the IS-algorithm, a well-known linear-time algorithm for computing the suffix array of a word. This algorithm relies on transforming the input word w into another word, called the reduced word of w, that will be at least twice shorter; then, the algorithm recursively computes the suffix array of the reduced word. In this article, we study the reduction ratio of the IS-algorithm, i.e., the ratio between the lengths of the input word and the word obtained after reducing k times the input word. We investigate both worst cases, in which we find precise results, and random cases, where we prove some strong convergence phenomena. Finally, we prove that, if the input word is a randomly chosen word of length n, we should not expect much more than log(log(n)) recursive function calls.
Feedback for Dagstuhl Publishing