LIPIcs.ICALP.2022.43.pdf
- Filesize: 0.76 MB
- 18 pages
Cohen, Peri and Ta-Shma [Gil Cohen et al., 2021] considered the following question: Assume the vertices of an expander graph are labelled by ± 1. What "test" functions f : {±1}^t → {±1} can or cannot distinguish t independent samples from those obtained by a random walk? [Gil Cohen et al., 2021] considered only balanced labellings, and proved that for all symmetric functions the distinguishability goes down to zero with the spectral gap λ of the expander G. In addition, [Gil Cohen et al., 2021] show that functions computable by AC⁰ circuits are fooled by expanders with vanishing spectral expansion. We continue the study of this question. We generalize the result to all labelling, not merely balanced ones. We also improve the upper bound on the error of symmetric functions. More importantly, we give a matching lower bound and show a symmetric function with distinguishability going down to zero with λ but not with t. Moreover, we prove a lower bound on the error of functions in AC⁰ in particular, we prove that a random walk on expanders with constant spectral gap does not fool AC⁰.
Feedback for Dagstuhl Publishing