LIPIcs.ICALP.2022.50.pdf
- Filesize: 0.66 MB
- 10 pages
This paper considers additive approximation algorithms for All-Pairs Shortest Paths (APSP) and Shortest Cycle in undirected unweighted graphs. The results are as follows: - We obtain the first +2-approximation algorithm for APSP in n-vertex graphs that improves upon Dor, Halperin and Zwick’s (SICOMP'00) Õ(n^{7/3}) time algorithm. The new algorithm runs in Õ(n^2.29) time and is obtained via a reduction to Min-Plus product of bounded difference matrices. - We obtain the first additive approximation scheme for Shortest Cycle, generalizing the approximation algorithms of Itai and Rodeh (SICOMP'78) and Roditty and Vassilevska W. (SODA'12). For every integer r ≥ 0, we give an Õ(n+n^{2+r}/m^r) time algorithm that returns a +(2r+1)-approximate shortest cycle in any n-vertex, m-edge graph.
Feedback for Dagstuhl Publishing