Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Lassota, Alexandra; Łukasiewicz, Aleksander; Polak, Adam https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-164286
URL:

; ;

Tight Vector Bin Packing with Few Small Items via Fast Exact Matching in Multigraphs

pdf-format:


Abstract

We solve the Bin Packing problem in O^*(2^k) time, where k is the number of items less or equal to one third of the bin capacity. This parameter measures the distance from the polynomially solvable case of only large (i.e., greater than one third) items. Our algorithm is actually designed to work for a more general Vector Bin Packing problem, in which items are multidimensional vectors. We improve over the previous fastest O^*(k! ⋅ 4^k) time algorithm.
Our algorithm works by reducing the problem to finding an exact weight perfect matching in a (multi-)graph with O^*(2^k) edges, whose weights are integers of the order of O^*(2^k). To solve the matching problem in the desired time, we give a variant of the classic Mulmuley-Vazirani-Vazirani algorithm with only a linear dependence on the edge weights and the number of edges - which may be of independent interest.
Moreover, we give a tight lower bound, under the Strong Exponential Time Hypothesis (SETH), showing that the constant 2 in the base of the exponent cannot be further improved for Vector Bin Packing.
Our techniques also lead to improved algorithms for Vector Multiple Knapsack, Vector Bin Covering, and Perfect Matching with Hitting Constraints.

BibTeX - Entry

@InProceedings{lassota_et_al:LIPIcs.ICALP.2022.87,
  author =	{Lassota, Alexandra and {\L}ukasiewicz, Aleksander and Polak, Adam},
  title =	{{Tight Vector Bin Packing with Few Small Items via Fast Exact Matching in Multigraphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{87:1--87:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16428},
  URN =		{urn:nbn:de:0030-drops-164286},
  doi =		{10.4230/LIPIcs.ICALP.2022.87},
  annote =	{Keywords: Bin Packing, Vector Bin Packing, Parameterized Complexity, Matching}
}

Keywords: Bin Packing, Vector Bin Packing, Parameterized Complexity, Matching
Seminar: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Issue date: 2022
Date of publication: 28.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI