LIPIcs.CCC.2022.3.pdf
- Filesize: 0.85 MB
- 22 pages
We construct improved hitting set generators (HSGs) for ordered (read-once) regular branching programs in two parameter regimes. First, we construct an explicit ε-HSG for unbounded-width regular branching programs with a single accept state with seed length Õ(log n ⋅ log(1/ε)), where n is the length of the program. Second, we construct an explicit ε-HSG for width-w length-n regular branching programs with seed length Õ(log n ⋅ (√{log(1/ε)} + log w) + log(1/ε)). For context, the "baseline" in this area is the pseudorandom generator (PRG) by Nisan (Combinatorica 1992), which fools ordered (possibly non-regular) branching programs with seed length O(log(wn/ε) ⋅ log n). For regular programs, the state-of-the-art PRG, by Braverman, Rao, Raz, and Yehudayoff (FOCS 2010, SICOMP 2014), has seed length Õ(log(w/ε) ⋅ log n), which beats Nisan’s seed length when log(w/ε) = o(log n). Taken together, our two new constructions beat Nisan’s seed length in all parameter regimes except when log w and log(1/ε) are both Ω(log n) (for the construction of HSGs for regular branching programs with a single accept vertex). Extending work by Reingold, Trevisan, and Vadhan (STOC 2006), we furthermore show that an explicit HSG for regular branching programs with a single accept vertex with seed length o(log² n) in the regime log w = Θ(log(1/ε)) = Θ(log n) would imply improved HSGs for general ordered branching programs, which would be a major breakthrough in derandomization. Pyne and Vadhan (CCC 2021) recently obtained such parameters for the special case of permutation branching programs.
Feedback for Dagstuhl Publishing