Pseudorandom Generators, Resolution and Heavy Width

Author Dmitry Sokolov



PDF
Thumbnail PDF

File

LIPIcs.CCC.2022.15.pdf
  • Filesize: 0.85 MB
  • 22 pages

Document Identifiers

Author Details

Dmitry Sokolov
  • St. Petersburg State University, Russia
  • St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Russia

Acknowledgements

I would like to thank Anastasia Sofronova, Edward Hirsch for fruitful discussions and attempts to fix my writing; anonymous reviewers for improving the text; Alexander Razborov and anonymous reviewers for pointing out incorrect operations with "Canonical Form" in an earlier draft of the paper. The work was supported by the Theoretical Physics and Mathematics Advancement Foundation "BASIS".

Cite AsGet BibTex

Dmitry Sokolov. Pseudorandom Generators, Resolution and Heavy Width. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 15:1-15:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.CCC.2022.15

Abstract

Following the paper of Alekhnovich, Ben-Sasson, Razborov, Wigderson [Michael Alekhnovich et al., 2004] we call a pseudorandom generator ℱ:{0, 1}ⁿ → {0, 1}^m hard for a propositional proof system P if P cannot efficiently prove the (properly encoded) statement b ∉ Im(ℱ) for any string b ∈ {0, 1}^m. In [Michael Alekhnovich et al., 2004] the authors suggested the "functional encoding" of the considered statement for Nisan-Wigderson generator that allows the introduction of "local" extension variables. These extension variables may potentially significantly increase the power of the proof system. In [Michael Alekhnovich et al., 2004] authors gave a lower bound of exp[Ω(n²/{m⋅2^{2^Δ}})] on the length of Resolution proofs where Δ is the degree of the dependency graph of the generator. This lower bound meets the barrier for the restriction technique. In this paper, we introduce a "heavy width" measure for Resolution that allows us to show a lower bound of exp[n²/{m 2^𝒪(εΔ)}] on the length of Resolution proofs of the considered statement for the Nisan-Wigderson generator. This gives an exponential lower bound up to Δ := log^{2 - δ} n (the bigger degree the more extension variables we can use). In [Michael Alekhnovich et al., 2004] authors left an open problem to get rid of scaling factor 2^{2^Δ}, it is a solution to this open problem.

Subject Classification

ACM Subject Classification
  • Theory of computation → Proof complexity
Keywords
  • proof complexity
  • pseudorandom generators
  • resolution
  • lower bounds

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space complexity in propositional calculus. SIAM J. Comput., 31(4):1184-1211, 2002. URL: https://doi.org/10.1137/S0097539700366735.
  2. Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudorandom generators in propositional proof complexity. SIAM J. Comput., 34(1):67-88, 2004. URL: https://doi.org/10.1137/S0097539701389944.
  3. Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus: Non-binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18-35, 2003. Available at http://people.cs.uchicago.edu/~razborov/files/misha.pdf. Preliminary version in FOCS '01.
  4. Albert Atserias and Víctor Dalmau. A combinatorial characterization of resolution width. J. Comput. Syst. Sci., 74(3):323-334, 2008. URL: https://doi.org/10.1016/j.jcss.2007.06.025.
  5. Paul Beame and Toniann Pitassi. Propositional proof complexity: Past, present and future. Bull. EATCS, 65:66-89, 1998. Google Scholar
  6. Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. J. ACM, 48(2):149-169, 2001. URL: https://doi.org/10.1145/375827.375835.
  7. Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the groebner basis algorithm to find proofs of unsatisfiability. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 174-183, 1996. URL: https://doi.org/10.1145/237814.237860.
  8. Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. J. Symb. Log., 44(1):36-50, 1979. URL: https://doi.org/10.2307/2273702.
  9. Susanna F. de Rezende, Jakob Nordström, Kilian Risse, and Dmitry Sokolov. Exponential resolution lower bounds for weak pigeonhole principle and perfect matching formulas over sparse graphs. In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 28:1-28:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.CCC.2020.28.
  10. Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. Optimal sherali-adams gaps from pairwise independence. In Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 125-139, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. Google Scholar
  11. Russell Impagliazzo, Pavel Pudlák, and Jirí Sgall. Lower bounds for the polynomial calculus and the gröbner basis algorithm. Computational Complexity, 8(2):127-144, 1999. URL: https://doi.org/10.1007/s000370050024.
  12. Jan Krajíček. Bounded arithmetic, propositional logic, and complexity theory, volume 60 of Encyclopedia of mathematics and its applications. Cambridge University Press, 1995. Google Scholar
  13. Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170:123-140, January 2001. URL: https://doi.org/10.4064/fm170-1-8.
  14. Jan Krajíček. Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds. J. Symb. Log., 69(1):265-286, 2004. URL: https://doi.org/10.2178/jsl/1080938841.
  15. Jan Krajíček. Proof complexity generators. In Hajo Broersma, Stefan S. Dantchev, Matthew Johnson, and Stefan Szeider, editors, Algorithms and Complexity in Durham 2006 - Proceedings of the Second ACiD Workshop, 18-20 September 2006, Durham, UK, volume 7 of Texts in Algorithmics, page 3. King’s College, London, 2006. Google Scholar
  16. Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149-167, 1994. URL: https://doi.org/10.1016/S0022-0000(05)80043-1.
  17. Pavel Pudlák. Proofs as games. Am. Math. Mon., 107(6):541-550, 2000. URL: http://www.jstor.org/stable/2589349.
  18. Alexander A. Razborov. Bounded arithmetic and lower bounds in boolean complexity. In Peter Clote and Jeffrey B. Remmel, editors, Feasible Mathematics II, pages 344-386, Boston, MA, 1995. Birkhäuser Boston. Google Scholar
  19. Alexander A. Razborov. Lower bounds for propositional proofs and independence results in bounded arithmetic. In Friedhelm Meyer auf der Heide and Burkhard Monien, editors, Automata, Languages and Programming, 23rd International Colloquium, ICALP96, Paderborn, Germany, 8-12 July 1996, Proceedings, volume 1099 of Lecture Notes in Computer Science, pages 48-62. Springer, 1996. URL: https://doi.org/10.1007/3-540-61440-0_116.
  20. Alexander A. Razborov. Improved resolution lower bounds for the weak pigeonhole principle. Electron. Colloquium Comput. Complex., 8(55), 2001. URL: http://eccc.hpi-web.de/eccc-reports/2001/TR01-055/index.html.
  21. Alexander A. Razborov. Resolution lower bounds for the weak functional pigeonhole principle. Theor. Comput. Sci., 303(1):233-243, 2003. URL: https://doi.org/10.1016/S0304-3975(02)00453-X.
  22. Alexander A. Razborov. Pseudorandom generators hard for k-dnf resolution and polynomial calculus resolution. Ann. of Math., 181:415-472, 2015. URL: https://doi.org/10.4007/annals.2015.181.2.1.
  23. Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A switching lemma for small restrictions and lower bounds for k-dnf resolution. SIAM J. Comput., 33(5):1171-1200, 2004. URL: https://doi.org/10.1137/S0097539703428555.
  24. Dmitry Sokolov. (Semi)Algebraic proofs over ±1 variables. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 78-90. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384288.
  25. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982, pages 80-91. IEEE Computer Society, 1982. URL: https://doi.org/10.1109/SFCS.1982.45.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail