LIPIcs.CP.2022.13.pdf
- Filesize: 0.82 MB
- 16 pages
Determining whether two STRIPS planning instances are isomorphic is the simplest form of comparison between planning instances. It is also a particular case of the problem concerned with finding an isomorphism between a planning instance P and a sub-instance of another instance P'. One application of such an isomorphism is to efficiently produce a compiled form containing all solutions to P from a compiled form containing all solutions to P'. In this paper, we study the complexity of both problems. We show that the former is GI-complete, and can thus be solved, in theory, in quasi-polynomial time. While we prove the latter to be NP-complete, we propose an algorithm to build an isomorphism, when possible. We report extensive experimental trials on benchmark problems which demonstrate conclusively that applying constraint propagation in preprocessing can greatly improve the efficiency of a SAT solver.
Feedback for Dagstuhl Publishing