MaxSAT-Based Bi-Objective Boolean Optimization

Authors Christoph Jabs , Jeremias Berg , Andreas Niskanen , Matti Järvisalo



PDF
Thumbnail PDF

File

LIPIcs.SAT.2022.12.pdf
  • Filesize: 1.45 MB
  • 23 pages

Document Identifiers

Author Details

Christoph Jabs
  • HIIT, Department of Computer Science, University of Helsinki, Finland
Jeremias Berg
  • HIIT, Department of Computer Science, University of Helsinki, Finland
Andreas Niskanen
  • HIIT, Department of Computer Science, University of Helsinki, Finland
Matti Järvisalo
  • HIIT, Department of Computer Science, University of Helsinki, Finland

Acknowledgements

The authors wish to thank the Finnish Computing Competence Infrastructure (FCCI) for supporting this project with computational and data storage resources.

Cite AsGet BibTex

Christoph Jabs, Jeremias Berg, Andreas Niskanen, and Matti Järvisalo. MaxSAT-Based Bi-Objective Boolean Optimization. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 12:1-12:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.SAT.2022.12

Abstract

We explore a maximum satisfiability (MaxSAT) based approach to bi-objective optimization. Bi-objective optimization refers to the task of finding so-called Pareto-optimal solutions in terms of two objective functions. Bi-objective optimization problems naturally arise in various real-world settings. For example, in the context of learning interpretable representations, such as decision rules, from data, one wishes to balance between two objectives, the classification error and the size of the representation. Our approach is generally applicable to bi-objective optimizations which allow for propositional encodings. The approach makes heavy use of incremental Boolean satisfiability (SAT) solving and draws inspiration from modern MaxSAT solving approaches. In particular, we describe several variants of the approach which arise from different approaches to MaxSAT solving. In addition to computing a single representative solution per each point of the Pareto front, the approach allows for enumerating all Pareto-optimal solutions. We empirically compare the efficiency of the approach to recent competing approaches, showing practical benefits of our approach in the contexts of learning interpretable classification rules and bi-objective set covering.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorial optimization
  • Theory of computation → Constraint and logic programming
Keywords
  • Multi-objective optimization
  • Pareto front enumeration
  • bi-objective optimization
  • maximum satisfiability
  • incremental SAT

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Maria João Alves and João C. N. Clímaco. A review of interactive methods for multiobjective integer and mixed-integer programming. European Journal of Operational Research, 180(1):99-115, 2007. URL: https://doi.org/10.1016/j.ejor.2006.02.033.
  2. Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub. Unsatisfiability-based optimization in clasp. In Agostino Dovier and Vítor Santos Costa, editors, Technical Communications of the 28th International Conference on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary, volume 17 of LIPIcs, pages 211-221. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. URL: https://doi.org/10.4230/LIPIcs.ICLP.2012.211.
  3. Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving SAT-based weighted MaxSAT solvers. In Michela Milano, editor, Principles and Practice of Constraint Programming - 18th International Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings, volume 7514 of Lecture Notes in Computer Science, pages 86-101. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-33558-7_9.
  4. Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving WPM2 for (weighted) partial MaxSAT. In Christian Schulte, editor, Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 117-132. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40627-0_12.
  5. Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial MaxSAT through satisfiability testing. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 427-440. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-02777-2_39.
  6. Josep Argelich, Inês Lynce, and João P. Marques Silva. On solving boolean multilevel optimization problems. In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 393-398, 2009. URL: http://ijcai.org/Proceedings/09/Papers/073.pdf.
  7. Jasbir S. Arora. Multiobjective optimum design concepts and methods. In Jasbir S. Arora, editor, Introduction to Optimum Design (Second Edition), pages 543-563. Academic Press, San Diego, second edition edition, 2004. URL: https://www.sciencedirect.com/science/article/pii/B9780120641550500173.
  8. Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiability. In Handbook of Satisfiability, volume 336 of FAIA, chapter 24, pages 929-991. IOS Press, 2021. URL: https://doi.org/10.3233/FAIA201008.
  9. Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of boolean cardinality constraints. In Francesca Rossi, editor, Principles and Practice of Constraint Programming - CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003, Proceedings, volume 2833 of Lecture Notes in Computer Science, pages 108-122. Springer, 2003. URL: https://doi.org/10.1007/978-3-540-45193-8_8.
  10. Jaroslav Bendík and Ivana Cerna. Rotation based MSS/MCS enumeration. In Elvira Albert and Laura Kovács, editors, LPAR 2020: 23rd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Alicante, Spain, May 22-27, 2020, volume 73 of EPiC Series in Computing, pages 120-137. EasyChair, 2020. URL: https://doi.org/10.29007/8btb.
  11. Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation, 7(2-3):59-6, 2010. URL: https://doi.org/10.3233/sat190075.
  12. Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proceedings of SAT Competition 2020 - Solver and Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Report Series B, pages 51-53. University of Helsinki, 2020. Google Scholar
  13. Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving. In Christian Schulte, editor, Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 247-262. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40627-0_21.
  14. Dheeru Dua and Casey Graff. UCI machine learning repository, 2021. URL: http://archive.ics.uci.edu/ml.
  15. Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Electronic Notes in Theoretical Computer Science, 89(4):543-560, 2003. URL: https://doi.org/10.1016/S1571-0661(05)82542-3.
  16. Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1-26, 2006. URL: https://doi.org/10.3233/sat190014.
  17. Matthias Ehrgott. Multicriteria Optimization (2. ed.). Springer, 2005. URL: https://doi.org/10.1007/3-540-27659-9.
  18. Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spectrum, 22(4):425-460, 2000. URL: https://doi.org/10.1007/s002910000046.
  19. Katalin Fazekas, Fahiem Bacchus, and Armin Biere. Implicit hitting set algorithms for maximum satisfiability modulo theories. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of Lecture Notes in Computer Science, pages 134-151. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-94205-6_10.
  20. Renaud Hartert and Pierre Schaus. A support-based algorithm for the bi-objective pareto constraint. In Carla E. Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27-31, 2014, Québec City, Québec, Canada, pages 2674-2679. AAAI Press, 2014. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8337.
  21. Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Learning optimal decision trees with MaxSAT and its integration in AdaBoost. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 1170-1176. ijcai.org, 2020. URL: https://doi.org/10.24963/ijcai.2020/163.
  22. Alexey Ignatiev, João Marques-Silva, Nina Narodytska, and Peter J. Stuckey. Reasoning-based learning of interpretable ML models. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pages 4458-4465. ijcai.org, 2021. URL: https://doi.org/10.24963/ijcai.2021/608.
  23. Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient MaxSAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 11(1):53-64, 2019. URL: https://doi.org/10.3233/SAT190116.
  24. Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João Marques-Silva. A SAT-based approach to learn explainable decision sets. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of Lecture Notes in Computer Science, pages 627-645. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-94205-6_41.
  25. Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, and João Marques-Silva. Smallest MUS extraction with minimal hitting set dualization. In Gilles Pesant, editor, Principles and Practice of Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science, pages 173-182. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-23219-5_13.
  26. Mikolás Janota, António Morgado, José Fragoso Santos, and Vasco M. Manquinho. The Seesaw algorithm: Function optimization using implicit hitting sets. In Laurent D. Michel, editor, 27th International Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs, pages 31:1-31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.CP.2021.31.
  27. Yaochu Jin and Bernhard Sendhoff. Pareto-based multiobjective machine learning: An overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 38(3):397-415, 2008. URL: https://doi.org/10.1109/TSMCC.2008.919172.
  28. Miyuki Koshimura, Hidetomo Nabeshima, Hiroshi Fujita, and Ryuzo Hasegawa. Minimal model generation with respect to an atom set. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Proceedings of the 7th International Workshop on First-Order Theorem Proving, FTP 2009, Oslo, Norway, July 6-7, 2009, volume 556 of CEUR Workshop Proceedings. CEUR-WS.org, 2009. URL: http://ceur-ws.org/Vol-556/paper06.pdf.
  29. Kuan Lu, Shinji Mizuno, and Jianming Shi. A new mixed integer programming approach for optimization over the efficient set of a multiobjective linear programming problem. Optimization Letters, 14(8):2323-2333, 2020. URL: https://doi.org/10.1007/s11590-020-01554-7.
  30. Dmitry Malioutov and Kuldeep S. Meel. MLIC: A MaxSAT-based framework for learning interpretable classification rules. In John N. Hooker, editor, Principles and Practice of Constraint Programming - 24th International Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science, pages 312-327. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-98334-9_21.
  31. R. Marler and Jasbir Arora. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26:369-395, April 2004. URL: https://doi.org/10.1007/s00158-003-0368-6.
  32. João Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce. Boolean lexicographic optimization: algorithms & applications. Annals of Mathematics and Artificial Intelligence, 62(3-4):317-343, 2011. URL: https://doi.org/10.1007/s10472-011-9233-2.
  33. Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers. In Handbook of Satisfiability, volume 336 of FAIA, chapter 4, pages 133-182. IOS Press, 2021. URL: https://doi.org/10.3233/FAIA200987.
  34. João Marques-Silva and Jordi Planes. On using unsatisfiability for solving maximum satisfiability. Computing Research Repository, abs/0712.1097, 2007. URL: http://arxiv.org/abs/0712.1097.
  35. Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce. Incremental cardinality constraints for MaxSAT. In Barry O'Sullivan, editor, Principles and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 531-548. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-10428-7_39.
  36. Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver. In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 438-445. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-09284-3_33.
  37. Christoph Molnar. Interpretable Machine Learning. Lulu.com, 2 edition, 2022. URL: https://christophm.github.io/interpretable-ml-book/.
  38. António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided MaxSAT with soft cardinality constraints. In Barry O'Sullivan, editor, Principles and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 564-573. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-10428-7_41.
  39. António Morgado, Mark H. Liffiton, and João Marques-Silva. MaxSAT-based MCS enumeration. In Armin Biere, Amir Nahir, and Tanja E. J. Vos, editors, Hardware and Software: Verification and Testing - 8th International Haifa Verification Conference, HVC 2012, Haifa, Israel, November 6-8, 2012. Revised Selected Papers, volume 7857 of Lecture Notes in Computer Science, pages 86-101. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-39611-3_13.
  40. Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and João Marques-Silva. Learning optimal decision trees with SAT. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1362-1368. ijcai.org, 2018. URL: https://doi.org/10.24963/ijcai.2018/189.
  41. Tobias Paxian, Pascal Raiola, and Bernd Becker. On preprocessing for weighted MaxSAT. In Fritz Henglein, Sharon Shoham, and Yakir Vizel, editors, Verification, Model Checking, and Abstract Interpretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings, volume 12597 of Lecture Notes in Computer Science, pages 556-577. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-67067-2_25.
  42. Alessandro Previti, Carlos Mencía, Matti Järvisalo, and João Marques-Silva. Improving MCS enumeration via caching. In Serge Gaspers and Toby Walsh, editors, Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer Science, pages 184-194. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-66263-3_12.
  43. L.M. Rasmussen. Zero - one programming with multiple criteria. European Journal of Operational Research, 26(1):83-95, 1986. URL: https://www.sciencedirect.com/science/article/pii/037722178690161X.
  44. Paul Saikko, Carmine Dodaro, Mario Alviano, and Matti Järvisalo. A hybrid approach to optimization in answer set programming. In Michael Thielscher, Francesca Toni, and Frank Wolter, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018, pages 32-41. AAAI Press, 2018. URL: https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021.
  45. Paul Saikko, Johannes Peter Wallner, and Matti Järvisalo. Implicit hitting set algorithms for reasoning beyond NP. In Chitta Baral, James P. Delgrande, and Frank Wolter, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016, pages 104-113. AAAI Press, 2016. URL: http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812.
  46. Marianna De Santis, Gabriele Eichfelder, Julia Niebling, and Stefan Rocktäschel. Solving multiobjective mixed integer convex optimization problems. SIAM Journal on Optimization, 30(4):3122-3145, 2020. URL: https://doi.org/10.1137/19M1264709.
  47. Takehide Soh, Mutsunori Banbara, Naoyuki Tamura, and Daniel Le Berre. Solving multiobjective discrete optimization problems with propositional minimal model generation. In J. Christopher Beck, editor, Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages 596-614. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-66158-2_38.
  48. Miguel Terra-Neves, Inês Lynce, and Vasco M. Manquinho. Enhancing constraint-based multi-objective combinatorial optimization. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 6649-6656. AAAI Press, 2018. URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17227.
  49. Miguel Terra-Neves, Inês Lynce, and Vasco M. Manquinho. Multi-objective optimization through pareto minimal correction subsets. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 5379-5383. ijcai.org, 2018. URL: https://doi.org/10.24963/ijcai.2018/757.
  50. Miguel Terra-Neves, Inês Lynce, and Vasco M. Manquinho. Stratification for constraint-based multi-objective combinatorial optimization. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1376-1382. ijcai.org, 2018. URL: https://doi.org/10.24963/ijcai.2018/191.
  51. Jinqiang Yu, Alexey Ignatiev, Pierre Le Bodic, and Peter J. Stuckey. Optimal decision lists using SAT. Computing Research Repository, abs/2010.09919, 2020. URL: http://arxiv.org/abs/2010.09919.
  52. Jinqiang Yu, Alexey Ignatiev, Peter J. Stuckey, and Pierre Le Bodic. Computing optimal decision sets with SAT. In Helmut Simonis, editor, Principles and Practice of Constraint Programming - 26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020, Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 952-970. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-58475-7_55.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail