LIPIcs.SAT.2022.14.pdf
- Filesize: 1.47 MB
- 19 pages
Boolean satisfiability (SAT) solvers allow for incremental computations, which is key to efficient employment of SAT solvers iteratively for developing complex decision and optimization procedures, including maximum satisfiability (MaxSAT) solvers. However, enabling incremental computations on the level of constraint optimization remains a noticeable challenge. While incremental computations have been identified to have great potential in speeding up MaxSAT-based approaches for solving various real-world optimization problems, enabling incremental computations in MaxSAT remains to most extent unexplored. In this work, we contribute towards making incremental MaxSAT solving a reality. Firstly, building on the IPASIR interface for incremental SAT solving, we propose the IPAMIR interface for implementing incremental MaxSAT solvers and for developing applications making use of incremental MaxSAT. Secondly, we expand our recent adaptation of the implicit hitting set based MaxHS MaxSAT solver to a fully-fledged incremental MaxSAT solver in terms of implementing the IPAMIR specification in full, and detail in particular how, in addition to weight changes, assumptions are enabled without losing incrementality. Thirdly, we provide further empirical evidence on the benefits of incremental MaxSAT solving under assumptions.
Feedback for Dagstuhl Publishing