LIPIcs.TYPES.2021.6.pdf
- Filesize: 0.75 MB
- 21 pages
The setoid model of Martin-Löf’s type theory bootstraps extensional features of type theory from intensional type theory equipped with a universe of definitionally proof irrelevant (strict) propositions. Extensional features include a Prop-valued identity type with a strong transport rule and function extensionality. We show that a setoid model supporting these features can be defined in intensional type theory without any of these features. The key component is a point-free notion of propositions. Our construction suggests that strict algebraic structures can be defined along the same lines in intensional type theory.
Feedback for Dagstuhl Publishing