On Upward-Planar L-Drawings of Graphs

Authors Patrizio Angelini , Steven Chaplick , Sabine Cornelsen , Giordano Da Lozzo



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2022.10.pdf
  • Filesize: 1.4 MB
  • 15 pages

Document Identifiers

Author Details

Patrizio Angelini
  • John Cabot University, Rome, Italy
Steven Chaplick
  • Maastricht University, The Netherlands
Sabine Cornelsen
  • University of Konstanz, Germany
Giordano Da Lozzo
  • Roma Tre University, Rome, Italy

Cite As Get BibTex

Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, and Giordano Da Lozzo. On Upward-Planar L-Drawings of Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.MFCS.2022.10

Abstract

In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st-graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t. It is known that a plane st-graph, i.e., an embedded st-graph in which the edge (s,t) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time. 
We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but the DAG is biconnected and series-parallel.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
  • Mathematics of computing → Graphs and surfaces
Keywords
  • graph drawing
  • planar L-drawings
  • directed graphs
  • bitonic st-ordering
  • upward planarity
  • series-parallel graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Patrizio Angelini, Michael A. Bekos, Henry Förster, and Martin Gronemann. Bitonic st-orderings for upward planar graphs: The variable embedding setting. In Isolde Adler and Haiko Müller, editors, Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, volume 12301 of LNCS, pages 339-351. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-60440-0_27.
  2. Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, and Giordano Da Lozzo. On upward-planar L-drawings of graphs. CoRR, abs/2205.05627, 2022. URL: https://doi.org/10.48550/arXiv.2205.05627.
  3. Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, and Giordano Da Lozzo. Planar L-drawings of bimodal graphs. Journal of Graph Algorithms and Applications, 26(3):307-334, 2022. URL: https://doi.org/10.7155/jgaa.00596.
  4. Patrizio Angelini, Giordano Da Lozzo, Marco Di Bartolomeo, Valentino Di Donato, Maurizio Patrignani, Vincenzo Roselli, and Ioannis G. Tollis. Algorithms and bounds for L-drawings of directed graphs. Int. J. Found. Comput. Sci., 29(4):461-480, 2018. URL: https://doi.org/10.1142/S0129054118410010.
  5. Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward drawings of triconnected digraphs. Algorithmica, 12(4):476-497, 1994. URL: https://doi.org/10.1007/BF01188716.
  6. Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto Tamassia. Optimal upward planarity testing of single-source digraphs. SIAM Journal on Computing, 27(1):132-169, 1998. URL: https://doi.org/10.1137/S0097539794279626.
  7. Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo, Tamara Mchedlidze, and Maurizio Patrignani. Upward book embeddings of st-graphs. In Gill Barequet and Yusu Wang, editors, 35th International Symposium on Computational Geometry, SoCG 2019, volume 129 of LIPIcs, pages 13:1-13:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.SoCG.2019.13.
  8. Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time. SIAM Journal on Computing, 46(4):1280-1303, 2017. URL: https://doi.org/10.1137/15M1042929.
  9. Guido Brückner, Markus Himmel, and Ignaz Rutter. An SPQR-tree-like embedding representation for upward planarity. In D. Archambault and C. D. Toth, editors, Graph Drawing and Network Visualization (GD'19), volume 11904 of LNCS, pages 517-531. Springer, 2016. URL: https://doi.org/10.1007/978-3-030-35802-0_39.
  10. Steven Chaplick, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Martin Nöllenburg, Maurizio Patrignani, Ioannis G. Tollis, and Alexander Wolff. Planar L-drawings of directed graphs. In Fabrizio Frati and Kwan-Liu Ma, editors, GD 2017, volume 10692 of LNCS, pages 465-478. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-73915-1_36.
  11. Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Raftopoulou, and Kirill Simonov. Parameterized algorithms for upward planarity. In 38th International Symposium on Computational Geometry, SoCG 2022, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  12. Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci., 61:175-198, 1988. URL: https://doi.org/10.1016/0304-3975(88)90123-5.
  13. Giuseppe Di Battista, Roberto Tamassia, and Ioannis G. Tollis. Area requirement and symmetry display of planar upward drawings. Discret. Comput. Geom., 7:381-401, 1992. URL: https://doi.org/10.1007/BF02187850.
  14. Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Upward spirality and upward planarity testing. SIAM Journal on Discrete Mathematics, 23(4):1842-1899, 2010. URL: https://doi.org/10.1137/070696854.
  15. Fabrizio Frati. On minimum area planar upward drawings of directed trees and other families of directed acyclic graphs. International Journal of Computational Geometry & Applications, 18(3):251-271, 2008. URL: https://doi.org/10.1007/978-3-540-74839-7_13.
  16. Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput., 31(2):601-625, 2001. URL: https://doi.org/10.1137/S0097539794277123.
  17. Martin Gronemann. Bitonic st-orderings for upward planar graphs. In Yifan Hu and Martin Nöllenburg, editors, Graph Drawing and Network Visualization (GD'16), volume 9801 of LNCS, pages 222-235. Springer, 2016. Available at URL: https://arxiv.org/abs/1608.08578.
  18. Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In Joe Marks, editor, Graph Drawing, 8th International Symposium, GD 2000, Colonial Williamsburg, VA, USA, September 20-23, 2000, Proceedings, volume 1984 of Lecture Notes in Computer Science, pages 77-90. Springer, 2000. URL: https://doi.org/10.1007/3-540-44541-2_8.
  19. Michael D. Hutton and Anna Lubiw. Upward planar drawing of single-source acyclic digraphs. SIAM Journal on Computing, 25(2):291-311, 1996. URL: https://doi.org/10.1137/S0097539792235906.
  20. Helen C. Purchase. Metrics for graph drawing aesthetics. J. Vis. Lang. Comput., 13(5):501-516, 2002. URL: https://doi.org/10.1006/jvlc.2002.0232.
  21. Kozo Sugiyama, Shôjirô Tagawa, and Mitsuhiko Toda. Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics, SMC-11(2):109-125, 1981. URL: https://doi.org/10.1109/TSMC.1981.4308636.
  22. Roberto Tamassia. Handbook of Graph Drawing and Visualization. Chapman & Hall/CRC, 1st edition, 2016. Google Scholar
  23. Colin Ware, Helen C. Purchase, Linda Colpoys, and Matthew McGill. Cognitive measurements of graph aesthetics. Inf. Vis., 1(2):103-110, 2002. URL: https://doi.org/10.1057/palgrave.ivs.9500013.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail