LIPIcs.MFCS.2022.17.pdf
- Filesize: 0.81 MB
- 13 pages
We study edge-labelings of the complete bidirected graph K^↔_n with functions that map the set [d] = {1, … , d} to itself. We call a directed cycle in K^↔_n a fixed-point cycle if composing the labels of its edges in order results in a map that has a fixed point, and we say that a labeling is fixed-point-free if no fixed-point cycle exists. For a given d, we ask for the largest value of n, denoted R_f(d), for which there exists a fixed-point-free labeling of K^↔_n. Determining R_f(d) for all d > 0 is a natural Ramsey-type question, generalizing some well-studied zero-sum problems in extremal combinatorics. The problem was recently introduced by Chaudhury, Garg, Mehlhorn, Mehta, and Misra [EC 2021], who proved that d ≤ R_f(d) ≤ d⁴+d and showed that the problem has close connections to EFX allocations, a central problem of fair allocation in social choice theory. In this paper we show the improved bound R_f(d) ≤ d^{2 + o(1)}, yielding an efficient (1-ε)-EFX allocation with n agents and O((n/ε)^{0.67}) unallocated goods; this improves the bound of O((n/ε)^{0.8}) of Chaudhury, Garg, Mehlhorn, Mehta, and Misra. {Additionally, we prove the stronger upper bound 2d-2, in the case where all edge-labels are permutations. A very special case of this problem, that of finding zero-sum cycles in digraphs whose edges are labeled with elements of ℤ_d, was recently considered by Alon and Krivelevich [JGT 2021] and by Mészáros and Steiner [EJC 2021]. Our result improves the bounds obtained by these authors and extends them to labelings with elements of an arbitrary (not necessarily commutative) group, while also simplifying the proof.}
Feedback for Dagstuhl Publishing