LIPIcs.MFCS.2022.25.pdf
- Filesize: 1.06 MB
- 14 pages
The partial representation extension problem generalizes the recognition problem for geometric intersection graphs. The input consists of a graph G, a subgraph H ⊆ G and a representation H of H. The question is whether G admits a representation G whose restriction to H is H. We study this question for circle graphs, which are intersection graphs of chords of a circle. Their representations are called chord diagrams. We show that for a graph with n vertices and m edges the partial representation extension problem can be solved in O((n + m) α(n + m)) time, where α is the inverse Ackermann function. This improves over an O(n³)-time algorithm by Chaplick, Fulek and Klavík [2019]. The main technical contributions are a canonical way of orienting chord diagrams and a novel compact representation of the set of all canonically oriented chord diagrams that represent a given circle graph G, which is of independent interest.
Feedback for Dagstuhl Publishing