On Kernels for d-Path Vertex Cover

Authors Radovan Červený , Pratibha Choudhary , Ondřej Suchý



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2022.29.pdf
  • Filesize: 0.91 MB
  • 14 pages

Document Identifiers

Author Details

Radovan Červený
  • Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic
Pratibha Choudhary
  • Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic
Ondřej Suchý
  • Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic

Cite As Get BibTex

Radovan Červený, Pratibha Choudhary, and Ondřej Suchý. On Kernels for d-Path Vertex Cover. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 29:1-29:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.MFCS.2022.29

Abstract

In this paper we study the kernelization of the d-Path Vertex Cover (d-PVC) problem. Given a graph G, the problem requires finding whether there exists a set of at most k vertices whose removal from G results in a graph that does not contain a path (not necessarily induced) with d vertices. It is known that d-PVC is NP-complete for d ≥ 2. Since the problem generalizes to d-Hitting Set, it is known to admit a kernel with 𝒪(dk^d) edges. We improve on this by giving better kernels. Specifically, we give kernels with 𝒪(k²) vertices and edges for the cases when d = 4 and d = 5. Further, we give a kernel with 𝒪(k⁴d^{2d+9}) vertices and edges for general d.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Fixed parameter tractability
Keywords
  • Parameterized complexity
  • Kernelization
  • d-Hitting Set
  • d-Path Vertex Cover
  • Expansion Lemma

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Boštjan Brešar, František Kardoš, Ján Katrenič, and Gabriel Semanišin. Minimum k-path vertex cover. Discrete Applied Mathematics, 159(12):1189-1195, 2011. URL: https://doi.org/10.1016/j.dam.2011.04.008.
  2. Eglantine Camby, Jean Cardinal, Mathieu Chapelle, Samuel Fiorini, and Gwenaël Joret. A primal-dual 3-approximation algorithm for hitting 4-vertex paths. In 9th International colloquium on graph theory and combinatorics, 2014. Google Scholar
  3. Radovan Červený and Ondřej Suchý. Faster FPT algorithm for 5-path vertex cover. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 32:1-32:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.MFCS.2019.32.
  4. Radovan Červený and Ondřej Suchý. Faster FPT algorithm for 5-path vertex cover. CoRR, abs/1906.09213, 2019. URL: http://arxiv.org/abs/1906.09213.
  5. Radovan Červený and Ondřej Suchý. Generating faster algorithms for d-path vertex cover. CoRR, abs/2111.05896, 2021. URL: http://arxiv.org/abs/2111.05896.
  6. Maw-Shang Chang, Li-Hsuan Chen, Ling-Ju Hung, Yi-Zhi Liu, Peter Rossmanith, and Somnath Sikdar. Moderately exponential time algorithms for the maximum bounded-degree-1 set problem. Discret. Appl. Math., 251:114-125, 2018. URL: https://doi.org/10.1016/j.dam.2018.05.032.
  7. Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor. Comput. Sci., 411(40-42):3736-3756, 2010. URL: https://doi.org/10.1016/j.tcs.2010.06.026.
  8. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  9. Holger Dell and Dániel Marx. Kernelization of packing problems. CoRR, abs/1812.03155, 2018. URL: http://arxiv.org/abs/1812.03155.
  10. Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 251-260. ACM, 2010. URL: https://doi.org/10.1145/1806689.1806725.
  11. Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate texts in mathematics. Springer, 2016. Google Scholar
  12. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449-467, 1965. URL: https://doi.org/10.4153/CJM-1965-045-4.
  13. Stefan Fafianie and Stefan Kratsch. A shortcut to (sun)flowers: Kernels in logarithmic space or linear time. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II, volume 9235 of Lecture Notes in Computer Science, pages 299-310. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48054-0_25.
  14. Henning Fernau. Parameterized algorithmics for d-hitting set. Int. J. Comput. Math., 87(14):3157-3174, 2010. URL: https://doi.org/10.1080/00207160903176868.
  15. Fedor V. Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Saket Saurabh. Iterative compression and exact algorithms. Theor. Comput. Sci., 411(7-9):1045-1053, 2010. URL: https://doi.org/10.1016/j.tcs.2009.11.012.
  16. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh. Hitting forbidden minors: Approximation and kernelization. SIAM J. Discret. Math., 30(1):383-410, 2016. URL: https://doi.org/10.1137/140997889.
  17. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM, 63(4), September 2016. URL: https://doi.org/10.1145/2886094.
  18. Stefan Funke, André Nusser, and Sabine Storandt. On k-path covers and their applications. VLDB J., 25(1):103-123, 2016. URL: https://doi.org/10.1007/s00778-015-0392-3.
  19. Michael Lampis. A kernel of order 2k-clog k for vertex cover. Inf. Process. Lett., 111(23-24):1089-1091, 2011. URL: https://doi.org/10.1016/j.ipl.2011.09.003.
  20. Euiwoong Lee. Partitioning a graph into small pieces with applications to path transversal. Math. Program., 177(1-2):1-19, 2019. URL: https://doi.org/10.1007/s10107-018-1255-7.
  21. John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci., 20(2):219-230, 1980. URL: https://doi.org/10.1016/0022-0000(80)90060-4.
  22. Marián Novotný. Design and analysis of a generalized canvas protocol. In Proc. 4th IFIP WG 11.2 International Workshop on Information Security Theory and Practices. Security and Privacy of Pervasive Systems and Smart Devices, WISTP 2010, pages 106-121, 2010. URL: https://doi.org/10.1007/978-3-642-12368-9_8.
  23. Elena Prieto-Rodríguez. Systematic kernelization in FPT algorithm design. PhD thesis, University of Newcastle, 2005. URL: http://hdl.handle.net/1959.13/1418337.
  24. Stéphan Thomassé. A 4k² kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1-32:8, 2010. URL: https://doi.org/10.1145/1721837.1721848.
  25. Dekel Tsur. Faster deterministic parameterized algorithm for k-path. Theor. Comput. Sci., 790:96-104, 2019. URL: https://doi.org/10.1016/j.tcs.2019.04.024.
  26. Dekel Tsur. l-path vertex cover is easier than l-hitting set for small l. CoRR, abs/1906.10523, 2019. URL: http://arxiv.org/abs/1906.10523.
  27. Dekel Tsur. Parameterized algorithm for 3-path vertex cover. Theor. Comput. Sci., 783:1-8, 2019. URL: https://doi.org/10.1016/j.tcs.2019.03.013.
  28. Dekel Tsur. An O^*(2.619^k) algorithm for 4-path vertex cover. Discret. Appl. Math., 291:1-14, 2021. URL: https://doi.org/10.1016/j.dam.2020.11.019.
  29. Jianhua Tu. A survey on the k-path vertex cover problem. CoRR, abs/2201.03397, 2022. URL: http://arxiv.org/abs/2201.03397.
  30. Jianhua Tu and Wenli Zhou. A primal-dual approximation algorithm for the vertex cover P₃ problem. Theor. Comput. Sci., 412(50):7044-7048, 2011. URL: https://doi.org/10.1016/j.tcs.2011.09.013.
  31. Mingyu Xiao and Shaowei Kou. Exact algorithms for the maximum dissociation set and minimum 3-path vertex cover problems. Theor. Comput. Sci., 657:86-97, 2017. URL: https://doi.org/10.1016/j.tcs.2016.04.043.
  32. Mingyu Xiao and Shaowei Kou. Kernelization and parameterized algorithms for 3-path vertex cover. In T. V. Gopal, Gerhard Jäger, and Silvia Steila, editors, Theory and Applications of Models of Computation - 14th Annual Conference, TAMC 2017, Bern, Switzerland, April 20-22, 2017, Proceedings, volume 10185 of Lecture Notes in Computer Science, pages 654-668, 2017. URL: https://doi.org/10.1007/978-3-319-55911-7_47.
  33. Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. Inf. Comput., 255:126-146, 2017. URL: https://doi.org/10.1016/j.ic.2017.06.001.
  34. Meirav Zehavi. Mixing color coding-related techniques. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 1037-1049. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_86.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail