LIPIcs.MFCS.2022.29.pdf
- Filesize: 0.91 MB
- 14 pages
In this paper we study the kernelization of the d-Path Vertex Cover (d-PVC) problem. Given a graph G, the problem requires finding whether there exists a set of at most k vertices whose removal from G results in a graph that does not contain a path (not necessarily induced) with d vertices. It is known that d-PVC is NP-complete for d ≥ 2. Since the problem generalizes to d-Hitting Set, it is known to admit a kernel with 𝒪(dk^d) edges. We improve on this by giving better kernels. Specifically, we give kernels with 𝒪(k²) vertices and edges for the cases when d = 4 and d = 5. Further, we give a kernel with 𝒪(k⁴d^{2d+9}) vertices and edges for general d.
Feedback for Dagstuhl Publishing