We study the Traveling Salesman Problem inside a simple polygon. In this problem, which we call tsp in a simple polygon, we wish to compute a shortest tour that visits a given set S of n sites inside a simple polygon P with m edges while staying inside the polygon. This natural problem has, to the best of our knowledge, not been studied so far from a theoretical perspective. It can be solved exactly in poly(n,m) + 2^O(√nlog n) time, using an algorithm by Marx, Pilipczuk, and Pilipczuk (FOCS 2018) for subset tsp as a subroutine. We present a much simpler algorithm that solves tsp in a simple polygon directly and that has the same running time.
@InProceedings{alkema_et_al:LIPIcs.ESA.2022.5, author = {Alkema, Henk and de Berg, Mark and Monemizadeh, Morteza and Theocharous, Leonidas}, title = {{TSP in a Simple Polygon}}, booktitle = {30th Annual European Symposium on Algorithms (ESA 2022)}, pages = {5:1--5:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-247-1}, ISSN = {1868-8969}, year = {2022}, volume = {244}, editor = {Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.5}, URN = {urn:nbn:de:0030-drops-169434}, doi = {10.4230/LIPIcs.ESA.2022.5}, annote = {Keywords: Traveling Salesman Problem, Subexponential algorithms, TSP with obstacles} }
Feedback for Dagstuhl Publishing