LIPIcs.ESA.2022.41.pdf
- Filesize: 0.7 MB
- 14 pages
Since the celebrated PPAD-completeness result for Nash equilibria in bimatrix games, a long line of research has focused on polynomial-time algorithms that compute ε-approximate Nash equilibria. Finding the best possible approximation guarantee that we can have in polynomial time has been a fundamental and non-trivial pursuit on settling the complexity of approximate equilibria. Despite a significant amount of effort, the algorithm of Tsaknakis and Spirakis [Tsaknakis and Spirakis, 2008], with an approximation guarantee of (0.3393+δ), remains the state of the art over the last 15 years. In this paper, we propose a new refinement of the Tsaknakis-Spirakis algorithm, resulting in a polynomial-time algorithm that computes a (1/3+δ)-Nash equilibrium, for any constant δ > 0. The main idea of our approach is to go beyond the use of convex combinations of primal and dual strategies, as defined in the optimization framework of [Tsaknakis and Spirakis, 2008], and enrich the pool of strategies from which we build the strategy profiles that we output in certain bottleneck cases of the algorithm.
Feedback for Dagstuhl Publishing