LIPIcs.ESA.2022.70.pdf
- Filesize: 0.85 MB
- 13 pages
Recently, Chalermsook et al. {[}SODA'21{]} introduces a notion of vertex sparsifiers for c-edge connectivity, which has found applications in parameterized algorithms for network design and also led to exciting dynamic algorithms for c-edge st-connectivity {[}Jin and Sun FOCS'22{]}. We study a natural extension called vertex sparsifiers for c-hyperedge connectivity and construct a sparsifier whose size matches the state-of-the-art for normal graphs. More specifically, we show that, given a hypergraph G = (V,E) with n vertices and m hyperedges with k terminal vertices and a parameter c, there exists a hypergraph H containing only O(kc³) hyperedges that preserves all minimum cuts (up to value c) between all subset of terminals. This matches the best bound of O(kc³) edges for normal graphs by [Liu'20]. Moreover, H can be constructed in almost-linear O(p^{1+o(1)} + n(rclog n)^{O(rc)}log m) time where r = max_{e ∈ E}|e| is the rank of G and p = ∑_{e ∈ E}|e| is the total size of G, or in poly(m, n) time if we slightly relax the size to O(kc³log^{1.5}(kc)) hyperedges.
Feedback for Dagstuhl Publishing